Learning with Singular Vectors

CIS 520 Lecture 30 October 2015 Barry Slaff

Based on: CIS 520 Wiki Materials Slides by Jia Li (PSU) Works cited throughout

Overview

Linear regression: Given X, Y find \widehat{w} : $\widehat{Y} = X\widehat{w}$ Choose the best \widehat{w} for projecting X onto Y.

Goal: Build a model that predicts well with *new* data. Motivating questions:

- **1.** What are the best possible features to extract from **X**?
- 2. What if **X** has many more features than observations or many features of **X** are highly correlated?
- What if each prediction is not a single number, but a vector y?

Overview

- Ordinary Least Squares (OLS) Regression: finds the projection direction for which the x's are maximally correlated with the y's
- **PCA:** new X features. Finds the directions of maximal covariance of the x's.
- Principal Component Regression (PCR): does PCA for dimensionality reduction on X, and then OLS using PC features.
- **Partial Least Squares (PLS) Regression:** new X and Y features. Finds the projection directions of X and Y that maximize their *covariance*.
- Regularization with Ridge Regression, PCR, and PLS.
- **Canonical Correlation Analysis:** new X and Y features. Finds the projection directions of X and Y that maximize their *correlation*.
- **PCA** and **CCA:** both using SVD to minimize reconstruction error or maximize variance/covariance

Linear Methods vs. Neural Nets

Linear methods: new features are linear combinations of original features

Neural nets are great! Why use linear methods?

Tera Scale deep learning project: 10 million images (200 x 200 pixels), 1 billion parameters

Singular Value Decomposition

Singular value decomposition of matrix X: $X = UDV^T$

X: the data matrix. (n x p).

U: orthogonal, $U^TU=I$. (n x n). Columns of U are the *left singular vectors of X*.

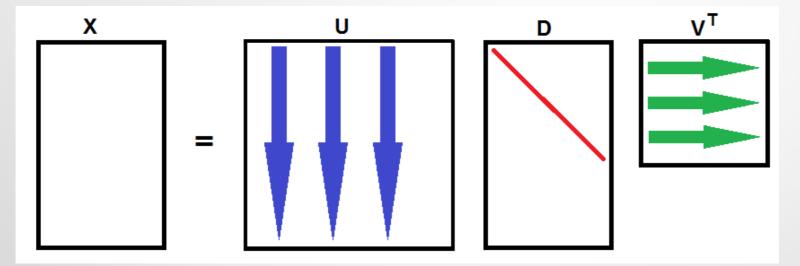
D: diagonal. (n x p).

Diagonal elements of D are the *singular values of X*. All non-negative; in *decreasing* order of magnitude down the diagonal.

V: orthogonal, $V^T V = I$. (p x p). Columns of V are the *right singular vectors of X*.

Singular Value Decomposition

Singular value decomposition of X: $X = UDV^T$



Let k = min(n,p). Then: $\mathbf{X} = \sum_{i=1}^{k} D_{ii} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$

Since all u_i , v_i are unit vectors, the importance of the i'th term in the sum is determined by the size of D_{ii} .

Singular Value Decomposition $X = UDV^T$, $X^TX = V(D^TD)V^T$

The columns $v_1, ..., v_p$ of V are the *eigenvectors* of the covariance matrix $X^T X$. Hence we can write

$$X^T X = \sum_{i=1}^p (D_{ii})^2 \boldsymbol{v}_i \boldsymbol{v}_i^T$$

From before:

$$\boldsymbol{X} = \sum_{i=1}^{k} D_{ii} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$$

k = min(n,p).

 D_{ii} are singular values of X, $(D_{ii})^2$ are eigenvalues of $X^T X$

Principal Component Analysis

PCA finds the directions of max covariance of the X's:

If X is mean-centered, then PCA finds the directions

$$v_i = \underset{\substack{w_i \in \mathbb{R}^p \\ w_i^T w_i = 1}}{\operatorname{argmax}} (Xw_i)^T (Xw_i)$$

such that v_i is uncorrelated with v_j for all j<i.

Principal Component Analysis

 $X \rightarrow X_c = UDV^T = ZV^T$ X_c is (n x p), Z is (n x p), V is (p x p).

Z is the transformation of **X** into "PC space" Column vector z_i is the i'th *PC score vector*. Column vector v_i is the i'th *PC direction* or *loading*.

Since V is orthogonal, $X_cV = ZV^TV = Z$, and therefore:

$$\boldsymbol{z}_i = \boldsymbol{X}_c \boldsymbol{v}_i = \boldsymbol{u}_i D_{ii}$$

Hence z_i is the projection of the row vectors of X_c on the (unit) direction v_i , scaled by D_{ii} .

Principal Component Analysis

 $X \rightarrow X_c = UDV^T = ZV^T$

$$\boldsymbol{X_c^T X_c} = \sum_{i=1}^p (D_{ii})^2 \boldsymbol{v}_i \boldsymbol{v}_i^T$$

"% Variance explained by the i'th principal component:"

$$= 100 \cdot \frac{(D_{ii})^2}{\sum_{j=1}^{p} (D_{jj})^2}$$

PCA

True or false: If **X** is any matrix, and **X** has singular value decomposition

 $X = UDV^T$

then the principal component scores for **X** are the columns of

Z = UD.

(a)True (b)False

PCA

If X is mean-centered, then PCA finds...?

(a) Eigenvectors of X^TX
(b) Right singular vectors of X
(C) Projection directions of max covariance of X
(d) All of the above

PCA: Reconstruction Problem

PCA can be viewed as an L₂ optimization, minimizing distortion, the reconstruction error.

$$Z^*, V^* = \underset{\substack{Z \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{p \times k}, \\ v_i^T v_j = \delta_{ij}}}{\operatorname{argmin}} |X_c - ZV^T|_F$$

Here we have constrained **Z**, **V** by dimension:

 X_c is still (n x p). Z is (n x k), with k<u><p</u>. V is (p x k).

If k=p then the reconstruction is perfect. k<p, not.

Sparse PCA

Apply L1-norm constraints to the PCA optimization problem to zero out loadings. (Another variation: Lo-norm constraints.)

Similar to using an L1-norm penalty to zero out weights in penalized linear regression.

$$Z^*, V^* = \underset{\substack{Z \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{p \times k}, \\ v_i^T v_j = \delta_{ij}}}{\operatorname{argmin}} |X_c - ZV^T|_F$$

Subject to:

$$|v_i|_1 < c_1$$
 for $i = 1, ..., k$
 $|z_i|_1 < c_2$ for $i = 1, ..., k$

Improves interpretability of PCA: "which PC scores really matter?" See Zhou, Hastie, and Tibshirani, 2006.

Regularized PCA

- PCA, with feature selection
- Sparse PCA, possibly also with feature selection

Why regularize PCA?

PCR:

Principal Component Regression

Ordinary Least Squares (OLS) Regression finds the direction **w** for which the **x**'s are maximally correlated with (predictive of) the **y**'s.

PCR has two steps:

- **1.** Do a PCA for dimensionality reduction
- 2. Do OLS regression using the PC features, usually with feature selection.

Toy Data

Suppose we generate toy data as follows:

- X is generated from normal random variables, all with the same mean and variance
- Y is generated as a linear combination of some of the x's, plus noise

If n>p: compared to normal OLS, what performance would we expect for...?

(a) PCR using all the components(b) PCR using a small number of components

PCR: Principal Component Regression

 $X \rightarrow X_c = ZV^T$

The columns $\mathbf{z_1}$... $\mathbf{z_k}$ can be used as features in supervised learning.

Ex: linear regression. Given training X and Y,

$$w^* = \underset{w \in \mathbb{R}^p}{\operatorname{argmin}} |Y - Zw|_2^2$$

If k=p: result is the *same* as linear regression with X, Y If k<p: this is a form of *regularized* linear regression

So is ridge regression! How are PCR and Ridge fundamentally different?

PCR: Principal Component Regression

 $\mathbf{X}_{c} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}} = \mathbf{Z}\mathbf{V}^{\mathsf{T}}, \qquad w^{*} = \underset{w \in \mathbb{R}^{p}}{\operatorname{argmin}} |Y - Zw|_{2}^{2}$

When the solution is unique, we can use the normal equation to write:

 $\hat{Y} = Zw^* = Z(Z^T Z)^{-1} Z^T Y = UD(D^T U^T UD)^{-1} D^T U^T Y$

$$\widehat{Y} = UU^T Y = \sum_{i=1}^n u_i u_i^T Y$$

 UU^T is the (n x n) hat matrix.

Ridge Regression in terms of SVD

X = **UDV**^T,
$$w^* = \underset{w \in \mathbb{R}^p}{argmin} (|Y - Xw|_2^2 + \gamma |w|_2^2)$$

Can solve: $\hat{Y} = Xw^* = X(X^TX + \gamma I)^{-1}X^TY$

 $\widehat{Y} = UDV^T (V[D^T D + \gamma (V^T V)]V^T)^{-1} VD^T U^T Y$

 $\hat{Y} = UD(D^TD + \gamma I)^{-1}DU^T = U\widetilde{D}U^T$

$$\widehat{Y} = \sum_{i=1}^{n} \frac{(D_{ii})^2}{(D_{ii})^2 + \gamma} \boldsymbol{u}_i \boldsymbol{u}_i^T = \sum_{i=1}^{n} \frac{\lambda_i^2}{\lambda_i^2 + \gamma} \boldsymbol{u}_i \boldsymbol{u}_i^T$$

OLS vs. Ridge vs. PCR

OLS: $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ $\hat{Y} = \sum_{i=1}^{n} u_{i}u_{i}^{\mathsf{T}}\mathbf{Y}$

Regularized methods:

PCR: $\mathbf{X}_{c} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ $\hat{Y} = \sum_{i=1}^{k} u_{i}u_{i}^{T}Y$, $k \leq n$ Ridge: $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ $\hat{Y} = \sum_{i=1}^{n} \frac{D_{ii}^{2}}{D_{ii}^{2} + \gamma} u_{i}u_{i}^{T}Y$

Ridge shrinks *all* the singular vectors, and keeps all. PCR chooses the k "largest" singular vectors.

Ridge Shrinkage

Ridge: $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ $\hat{Y} = \sum_{i=1}^{n} \frac{D_{ii}^2}{D_{ii}^2 + \gamma} \mathbf{u}_i \mathbf{u}_i^T \mathbf{Y}$

Which eigenvectors of **XX^T** does Ridge shrink the most (by % of original, for fixed gamma)?

(a)Largest eigenvalues
(b)Smallest eigenvalues
(C)All the same

Ridge Shrinkage Example

Suppose X, Y have a unique OLS solution.

Suppose $X = UDV^T$ and the nonzero singular values are 5, 4, 3, 2, and 1.

- What are the nonzero eigenvalues of **XX**^T?
- When constructing the hat matrix, how are these eigenvalues shrunk by PCR?
- When constructing the hat matrix, how are these eigenvalues shrunk by Ridge?

Partial Least Squares Regression

If **Y** is high-dimensional, we might want to do dimension reduction for *both* **Y** and **X**. Regress only the truly significant **Y** features against the truly significant **X** features.

PLS adjusts the PCA directions to a better job of predicting the y's.

PLS finds the projection directions of maximum covariance for **X** and **Y**. PLS is a kind of *canonical covariance analysis*.

(Comparison: PCA finds the projection directions of maximum covariance for **X** and **X**.)

Partial Least Squares Regression

PLS finds the projection directions of maximum covariance for X and Y. Basic idea*:

Project X_c down to **T**. Project Y_c down to **U**. (**U**, **T** have the same dimension)

"Inner model": regress **U** on **T.** One scalar regression weight per pair **u**_i, **v**_i.

Final model: regress Y on X Project each new x down into T-space Predict u's based on t's (inner model) Project each u up to each final y-hat.

*Historically, PLS could refer to one of many variant algorithms.

Partial Least Squares Regression

Find reduced-dimension representations **T** (of X_c) and **U** (of Y_c) such that each pair of corresponding columns t_i , u_i are optimal in the following sense:

Let
$$w_i^*$$
, $v_i^* = \underset{\substack{w_i \in \mathbb{R}^p, v_i \in \mathbb{R}^m \\ w_i^T w_i = v_i^T v_i = 1}}{argmax} (X_c w_i)^T (Y_c v_i)$

Subject to: $(X_c w_i^*)^T (X_c w_j^*) = 0$ for all j<i.

Then: $t_i := X_c w_i^*$ and $u_i := Y_c v_i^*$

PLS Regression

The first singular value a_1 of $X^T Y$ has the interpretation

$$(a_1)^2 = \max_{|d|=|e|=1} d^T X^T Y e$$

For $w_1 = d$ and $v_1 = e$, this is what we've computed above. w_1 is the first left singular vector of X^TY . v_1 is the first right singular vector of X^TY .

More on PLS:

Hoskuldsson A, "PLS Regression Methods," J. Chemometerics, 1988 Abdi H, Partial Least Squares (PLS) Regression: https://www.utdallas.edu/~herve/Abdi-PLS-pretty.pdf

PCR and PLS Feature Scores

The process of initially computing the *feature scores* to be considered in principal component regression uses...?

The process of initially computing the *feature scores* to be considered in partial least squares regression uses...?

(a) The X matrix only
(b) The Y matrix only
(C) Both the X and Y matrices

OLS vs PCR vs PLS

Suppose I have a data set with

p = 400 features, n = 100 observations

If I want to learn a linear model, then what should I consider when using...

(a) Ordinary least squares regression

(b)Ridge regression

(C) Principal component regression (PCR)

(d)Partial least squares regression (PLS)

Find the projection directions of maximum *correlation* for **X** and **Y**.

In PLS we compute (**X** and **Y** are mean-centered):

$$w_{i}^{*}, v_{i}^{*} = \underset{|w_{i}|=1, |v_{i}|=1}{argmax} (Xw_{i})^{T} (Yv_{i})$$

In *canonical correlation analysis (CCA)*, we compute:

$$w_{i}^{*}, v_{i}^{*} = \underset{|Xw_{i}|=1, |Yv_{i}|=1}{argmax} (Xw_{i})^{T} (Yv_{i})$$

$$w_i^*, v_i^* = \underset{|Xw_i|=1, |Yv_i|=1}{argmax} (Xw_i)^T (Yv_i)$$

This is equivalent to finding

$$w^{*}, v^{*} = \underset{w,v \in \mathbb{R}^{n}}{\operatorname{argmax}} \frac{w^{T} X^{T} Y v}{(w^{T} X^{T} X w)^{1/2} (v^{T} Y^{T} Y v)^{1/2}}$$

Let $X = UDV^T$. We define: $X^{1/2} = UD^{1/2}V^T$ Then the desired w_i^* , v_i^* are the singular vectors of:

$$(X^T X)^{-1/2} X^T Y (Y^T Y)^{-1/2}$$

 $w_i^*, v_i^* = \underset{|Xw_i|=1, |Yv_i|=1}{argmax} (Xw_i)^T (Yv_i)$

 w_i^* , v_i^* are the singular vectors of: $(X^T X)^{-1/2} X^T Y (Y^T Y)^{-1/2}$

w₁ and v₁ maximize the *correlation* between Xw and Yv.

 w_2 and v_2 do the same <u>and</u> are orthogonal to (respectively) w_1 and v_1 . Etc.

More:

http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf, http://www.ofai.at/~roman.rosipal/Papers/eig_booko4.pdf

Uses the singular vectors of: $(X^T X)^{-1/2} X^T Y (Y^T Y)^{-1/2}$

Correlation: re-scales the data, no units. Range -1 to 1.

Analog to auto-scaling: if $X^T X$ is diagonal, then this divides each row of X^T by the corresponding diagonal element of $(X^T X)^{1/2}$.

In the general case where **X**^T**X** is not diagonal: this normalizes **X**^T by "removing" covariance.

"Whitens" the data.

PCA vs. CCA vs. PLS

36 Tijl De Bie, Nello Cristianini, and Roman Rosipal

Table 1. Cost functions optimized by the different methods

PCA	Maximize variance	$\frac{\mathbf{w}'\mathbf{S}_{\mathbf{X}\mathbf{X}}\mathbf{w}}{\mathbf{w}'\mathbf{w}}$
		$\mathbf{w}' \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w} \text{ s.t. } \ \mathbf{w}\ ^2 = 1$
	Minimize residuals	$\ (\mathbf{I} - \mathbf{w}\mathbf{w}')\mathbf{X}\ _F^2$
CCA	Maximize correlation	$\frac{\mathbf{w}_{\mathbf{X}}'\mathbf{S}_{\mathbf{X}\mathbf{Y}}\mathbf{w}_{\mathbf{Y}}}{\sqrt{\mathbf{w}_{\mathbf{X}}'\mathbf{S}_{\mathbf{X}\mathbf{X}}\mathbf{w}_{\mathbf{X}}}\sqrt{\mathbf{w}_{\mathbf{Y}}'\mathbf{S}_{\mathbf{Y}\mathbf{Y}}\mathbf{w}_{\mathbf{Y}}}}$
	Maximize fit	$\mathbf{w}'_{\mathbf{X}}\mathbf{S}_{\mathbf{X}\mathbf{Y}}\mathbf{w}_{\mathbf{Y}}$ s.t. $\ \mathbf{X}\mathbf{w}_{\mathbf{X}}\ ^2 = \ \mathbf{Y}\mathbf{w}_{\mathbf{Y}}\ ^2 = 1$
	Minimize misfit	$\ \mathbf{w}_{\mathbf{X}}'\mathbf{X} - \mathbf{w}_{\mathbf{Y}}'\mathbf{Y}\ ^2$ s.t. $\ \mathbf{X}\mathbf{w}_{\mathbf{X}}\ ^2 = \ \mathbf{Y}\mathbf{w}_{\mathbf{Y}}\ ^2 = 1$
PLS	Maximize covariance	$\frac{\mathbf{w}_{\mathbf{X}}'\mathbf{S}_{\mathbf{X}\mathbf{Y}}\mathbf{w}_{\mathbf{Y}}}{\sqrt{\mathbf{w}_{\mathbf{X}}'\mathbf{w}_{\mathbf{X}}}\sqrt{\mathbf{w}_{\mathbf{Y}}'\mathbf{w}_{\mathbf{Y}}}}$
	Maximize fit	$\mathbf{w}'_{\mathbf{X}}\mathbf{S}_{\mathbf{X}\mathbf{Y}}\mathbf{w}_{\mathbf{Y}}$ s.t. $\ \mathbf{w}_{\mathbf{X}}\ ^2 = \ \mathbf{w}_{\mathbf{Y}}\ ^2 = 1$
	Minimize misfit	$\ \mathbf{w}_{\mathbf{X}}'\mathbf{X} - \mathbf{w}_{\mathbf{Y}}'\mathbf{Y}\ ^2 \text{ s.t. } \ \mathbf{w}_{\mathbf{X}}\ ^2 = \ \mathbf{w}_{\mathbf{Y}}\ ^2 = 1$

Bie et al: http://www.ofai.at/~roman.rosipal/Papers/eig_booko4.pdf

PCA, PLS, CCA, MLR

5.3 Relation to other linear subspace methods

Instead of the two eigenvalue equations in 4 we can formulate the problem in one single eigenvalue equation:

$$\mathbf{B}^{-1}\mathbf{A}\mathbf{\hat{w}} = \rho\mathbf{\hat{w}} \tag{11}$$

where

$$\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{C}_{xy} \\ \mathbf{C}_{yx} & \mathbf{0} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{C}_{xx} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{yy} \end{bmatrix} \quad \text{and} \quad \mathbf{\hat{w}} = \begin{pmatrix} \mu_x \mathbf{\hat{w}}_x \\ \mu_y \mathbf{\hat{w}}_y \end{pmatrix}.$$
(12)

Solving the eigenproblem in equation 11 with slightly different matrices will give solutions to *principal component analysis* (PCA), *partial least squares (PLS)* and multivariate linear regression (MLR). The matrices are listed in table 1.

	Α	В
PCA	\mathbf{C}_{xx}	Ι
PLS	$egin{pmatrix} 0 & \mathbf{C}_{xy} \ \mathbf{C}_{yx} & 0 \end{pmatrix}$	$\begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$
CCA	$egin{pmatrix} 0 & \mathbf{C}_{xy} \ \mathbf{C}_{yx} & 0 \end{pmatrix}$	$egin{pmatrix} \mathbf{C}_{xx} & 0 \ 0 & \mathbf{C}_{yy} \end{pmatrix}$
MLR	$egin{pmatrix} 0 & \mathbf{C}_{xy} \ \mathbf{C}_{yx} & 0 \end{pmatrix}$	$egin{pmatrix} \mathbf{C}_{xx} & 0 \\ 0 & \mathbf{I} \end{pmatrix}$

Table 1: The matrices **A** and **B** for PCA, PLS, CCA and MLR.

From: Borga, M. 2001.

https://www.c s.cmu.edu/~t om/10701_sp1 1/slides/CCA_ tutorial.pdf

Recap

OLS find direction of max correlation between x's and y's

PCA finds the directions of maximal covariance of the x's (find the SVD of X or X'X)

PCR does a PCA for dimensionality reduction and then OLS (usually with feature selection)

PLS adjusts the PCA directions to a better job of predicting the y's. Finds the projection directions of X and Y which maximize their *covariance*. Can be used when many features are correlated.

CCA finds the projection directions of X and Y that maximize their *correlation*. SVD of the 'whitened' $X^T Y$: $(X^T X)^{-1/2} X^T Y (Y^T Y)^{-1/2}$

PCA and CCA are both using SVD to minimize reconstruction error or maximize variance/covariance