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Overview

Linear regression: Given X, Y find  𝑤:  𝑌 = 𝑋 𝑤

Choose the best  𝑤 for projecting X onto Y.

Goal: Build a model that predicts well with new data.

Motivating questions:

1. What are the best possible features to extract from X?

2. What if X has many more features than observations or 
many features of X are highly correlated?

3. What if each prediction is not a single number, 
but a vector y?



Overview
• Ordinary Least Squares (OLS) Regression: finds the projection direction for 

which the x’s are maximally correlated with the y's

• PCA: new X features. Finds the directions of maximal covariance of the x's.

• Principal Component Regression (PCR): does PCA for dimensionality reduction 
on X, and then OLS using PC features.

• Partial Least Squares (PLS) Regression: new X and Y features. Finds the 
projection directions of X and Y that maximize their covariance.

• Regularization with Ridge Regression, PCR, and PLS.

• Canonical Correlation Analysis: new X and Y features. Finds the projection 
directions of X and Y that maximize their correlation.

• PCA and CCA: both using SVD to minimize reconstruction error or maximize 
variance/covariance



Linear Methods vs. Neural Nets

Linear methods: new features are linear combinations of 
original features

Neural nets are great! 

Why use linear methods?

Tera Scale deep learning project: 

10 million images (200 x 200 pixels), 1  billion parameters



Singular Value Decomposition

Singular value decomposition of matrix X:  X = UDVT

X: the data matrix. (n x p).

U: orthogonal, UTU=I. (n x n). 
Columns of U are the left singular vectors of X.

D: diagonal. (n x p). 
Diagonal elements of D are the singular values of X.
All non-negative; in decreasing order of magnitude down the 
diagonal.

V: orthogonal, VTV=I. (p x p). 
Columns of V are the right singular vectors of X.



Singular Value Decomposition

Singular value decomposition of X:  X = UDVT

Let k = min(n,p). Then: 𝐗 =  𝒊=𝟏
𝒌 𝐷𝑖𝑖𝒖𝑖𝒗𝑖

𝑇

Since all 𝒖𝑖, 𝒗𝑖 are unit vectors, the importance of the i’th
term in the sum is determined by the size of 𝐷𝑖𝑖. 



Singular Value Decomposition

𝑿 = 𝑼𝑫𝑽𝑻, 𝑿𝑻𝑿 = 𝑽 𝑫𝑻𝑫 𝑽𝑻

The columns v1,…vp of V are the eigenvectors of the covariance 
matrix XT X. Hence we can write

𝑿𝑻𝑿 = 

𝒊=𝟏

𝒑

(𝐷𝑖𝑖 )
2 𝒗𝑖𝒗𝑖

𝑇

From before:

𝑿 = 

𝒊=𝟏

𝒌

𝐷𝑖𝑖𝒖𝑖𝒗𝑖
𝑇

k = min(n,p).

𝐷𝑖𝑖 are singular values of X, (𝐷𝑖𝑖 )
2 are eigenvalues of XTX



Principal Component Analysis

PCA finds the directions of max covariance of the X's:

If X is mean-centered, then PCA finds the directions 

𝑣𝑖 = 𝑎𝑟𝑔m𝑎𝑥
𝑤𝑖∈ℝ

𝑝

𝑤𝑖
𝑇𝑤𝑖=1

𝑋𝑤𝑖
𝑇(𝑋𝑤𝑖)

such that 𝑣𝑖 is uncorrelated with 𝑣𝑗 for all j<i.



Principal Component Analysis

X →Xc = UDVT = ZVT

Xc is (n x p), Z is (n x p), V is (p x p).

Z is the transformation of X into “PC space”
Column vector 𝒛𝑖 is the i’th PC score vector.
Column vector 𝒗𝑖 is the i’th PC direction or loading.

Since V is orthogonal, XcV = ZVTV = Z, and therefore:

𝒛𝑖 = 𝑿𝒄𝒗𝑖 = 𝒖𝑖𝐷𝑖𝑖

Hence 𝒛𝑖 is the projection of the row vectors of Xc on the 
(unit) direction 𝒗𝑖, scaled by 𝐷𝑖𝑖.



Principal Component Analysis

X →Xc = UDVT = ZVT

𝑿𝒄
𝑻𝑿𝒄 = 

𝒊=𝟏

𝒑

(𝐷𝑖𝑖 )
2 𝒗𝑖𝒗𝑖

𝑇

“% Variance explained by the i’th principal component:”

= 100 ⋅
(𝐷𝑖𝑖 )

2

 
𝒋=𝟏
𝒑

(𝐷𝑗𝑗)
2



PCA

True or false: If X is any matrix, and X has singular value 
decomposition 

X = UDVT

then the principal component scores for X are the columns of

Z = UD.

(a)True

(b)False



PCA

If X is mean-centered, then PCA finds…?

(a)Eigenvectors of XTX

(b)Right singular vectors of X

(c)Projection directions of max covariance of X

(d)All of the above



PCA: Reconstruction Problem
PCA can be viewed as an L2 optimization, minimizing 

distortion, the reconstruction error.

𝑍∗, 𝑉∗ = 𝑎𝑟𝑔min
𝑍∈ℝ𝑛×𝑘, 𝑉∈ℝ𝑝×𝑘,

𝑣𝑖
𝑇𝑣𝑗=𝛿𝑖𝑗

𝑋𝑐 − 𝑍𝑉𝑇
𝐹

Here we have constrained Z, V by dimension:

Xc is still (n x p).

Z is (n x k), with k<p. 

V is (p x k). 

If k=p then the reconstruction is perfect. k<p, not.



Sparse PCA

Apply L1-norm constraints to the PCA optimization problem to zero 
out loadings. (Another variation: L0-norm constraints.)

Similar to using an L1-norm penalty to zero out weights in penalized 
linear regression.

𝑍∗, 𝑉∗ = 𝑎𝑟𝑔min
𝑍∈ℝ𝑛×𝑘, 𝑉∈ℝ𝑝×𝑘,

𝑣𝑖
𝑇𝑣𝑗=𝛿𝑖𝑗

𝑋𝑐 − 𝑍𝑉𝑇
𝐹

Subject to:
𝑣𝑖 1 < 𝑐1 for 𝑖 = 1,… , 𝑘
𝑧𝑖 1 < 𝑐2 for 𝑖 = 1,… , 𝑘

Improves interpretability of PCA: “which PC scores really matter?” 
See Zhou, Hastie, and Tibshirani, 2006.



Regularized PCA

• PCA, with feature selection

• Sparse PCA, possibly also with feature selection

Why regularize PCA?



PCR: 
Principal Component Regression

Ordinary Least Squares (OLS) Regression finds the 
direction w for which the x's are maximally correlated 
with (predictive of) the y's.

PCR has two steps:

1. Do a PCA for dimensionality reduction 

2. Do OLS regression using the PC features, usually 
with feature selection.



Toy Data

Suppose we generate toy data as follows:

• X is generated from normal random variables, all with the same 
mean and variance

• Y is generated as a linear combination of some of the x’s, plus 
noise

If n>p: compared to normal OLS, what performance would we expect 
for…?

(a)PCR using all the components

(b)PCR using a small number of components



PCR: Principal Component Regression

X →Xc = ZVT

The columns z1,…zk can be used as features in supervised 
learning. 

Ex: linear regression. Given training X and Y,

𝑤∗ = 𝑎𝑟𝑔min
𝑤∈ℝ𝑝

𝑌 − 𝑍𝑤 2
2

If k=p: result is the same as linear regression with X, Y

If k<p: this is a form of regularized linear regression

So is ridge regression! How are PCR and Ridge 
fundamentally different?



PCR: Principal Component Regression

Xc = UDVT = ZVT, 𝑤∗ = 𝑎𝑟𝑔min
𝑤∈ℝ𝑝

𝑌 − 𝑍𝑤 2
2

When the solution is unique, we can use the normal 
equation to write:

 𝑌 = 𝑍𝑤∗ = 𝑍 𝑍𝑇𝑍 −1𝑍𝑇𝑌 = 𝑈𝐷 𝐷𝑇𝑈𝑇𝑈𝐷 −1𝐷𝑇𝑈𝑇𝑌

 𝑌 = 𝑈𝑈𝑇𝑌 = 

𝒊=𝟏

𝒏

𝒖𝑖𝒖𝑖
𝑇𝒀

𝑈𝑈𝑇 is the (n x n) hat matrix.



Ridge Regression in terms of SVD

X = UDVT, 𝑤∗ = 𝑎𝑟𝑔min (
𝑤∈ℝ𝑝

𝑌 − 𝑋𝑤 2
2

+ 𝛾 𝑤 2
2 )

Can solve:  𝑌 = 𝑋𝑤∗ = 𝑋 𝑋𝑇𝑋 + 𝛾𝐼 −1𝑋𝑇𝑌

 𝑌 = 𝑈𝐷𝑉𝑇 𝑉[𝐷𝑇𝐷 + 𝛾(𝑉𝑇𝑉)]𝑉𝑇 −1𝑉𝐷𝑇𝑈𝑇𝑌

 𝑌 = 𝑈𝐷 𝐷𝑇𝐷 + 𝛾𝐼 −1𝐷𝑈𝑇 = 𝑈 𝐷𝑈𝑇

 𝑌 = 

𝒊=𝟏

𝒏
(𝐷𝑖𝑖 )

2

(𝐷𝑖𝑖 )
2 + 𝛾

𝒖𝑖𝒖𝑖
𝑇 =  

𝒊=𝟏

𝒏
𝜆𝑖
2

𝜆𝑖
2 + 𝛾

𝒖𝑖𝒖𝑖
𝑇



OLS vs. Ridge vs. PCR

OLS: X = UDVT  𝑌 =  𝒊=𝟏
𝒏 𝒖𝑖𝒖𝑖

𝑇𝒀

Regularized methods:

PCR: Xc = UDVT  𝑌 =  𝒊=𝟏
𝒌 𝒖𝑖𝒖𝑖

𝑇𝒀 ,    k<n

Ridge: X = UDVT  𝑌 =  𝒊=𝟏
𝒏 𝐷𝑖𝑖

2

𝐷𝑖𝑖
2+𝛾

𝒖𝑖𝒖𝑖
𝑇𝒀

Ridge shrinks all the singular vectors, and keeps all.

PCR chooses the k “largest” singular vectors.



Ridge Shrinkage

Ridge: X = UDVT  𝑌 =  𝒊=𝟏
𝒏 𝐷𝑖𝑖

2

𝐷𝑖𝑖
2+𝛾

𝒖𝑖𝒖𝑖
𝑇𝒀

Which eigenvectors of XXT does Ridge shrink the most 
(by % of original, for fixed gamma)?

(a)Largest eigenvalues

(b)Smallest eigenvalues

(c)All the same



Ridge Shrinkage Example

Suppose X, Y have a unique OLS solution.

Suppose X = UDVT and the nonzero singular values are 

5, 4, 3, 2, and 1.

• What are the nonzero eigenvalues of XXT?

• When constructing the hat matrix, how are these 
eigenvalues shrunk by PCR?

• When constructing the hat matrix, how are these 
eigenvalues shrunk by Ridge?



Partial Least Squares Regression

If Y is high-dimensional, we might want to do dimension 
reduction for both Y and X. Regress only the truly significant Y 
features against the truly significant X features.

PLS adjusts the PCA directions to a better job of predicting 
the y's.

PLS finds the projection directions of maximum covariance 
for X and Y. PLS is a kind of canonical covariance analysis.

(Comparison: PCA finds the projection directions of maximum 
covariance for X and X.)



Partial Least Squares Regression
PLS finds the projection directions of maximum covariance for 
X and Y. Basic idea*:

Project Xc down to T. Project Yc down to U.

(U, T have the same dimension)

“Inner model”: regress U on T. 

One scalar regression weight per pair ui, vi.

Final model: regress Y on X

Project each new x down into T-space

Predict u’s based on t’s (inner model)

Project each u up to each final y-hat.

*Historically, PLS could refer to one of many variant algorithms.



Partial Least Squares Regression

Find reduced-dimension representations T (of Xc) and U (of 
Yc) such that each pair of corresponding columns ti , ui are 
optimal in the following sense:

Let 𝑤𝑖
∗, 𝑣𝑖

∗ = 𝑎𝑟𝑔m𝑎𝑥
𝑤𝑖∈ℝ

𝑝, 𝑣𝑖∈ℝ
𝑚

𝑤𝑖
𝑇𝑤𝑖 = 𝑣𝑖

𝑇𝑣𝑖 = 1

𝑋𝑐𝑤𝑖
𝑇(𝑌𝑐𝑣𝑖)

Subject to: 𝑋𝑐𝑤𝑖
∗ 𝑇 𝑋𝑐𝑤𝑗

∗ = 0 for all j<i.

Then: 𝑡𝑖: = 𝑋𝑐𝑤𝑖
∗ and 𝑢𝑖: = 𝑌𝑐𝑣𝑖

∗



PLS Regression

The first singular value a1 of XTY has the interpretation

𝑎1
2 = m𝑎𝑥

𝑑 = 𝑒 =1
𝑑𝑇 𝑋𝑇𝑌𝑒

For w1=d and v1=e, this is what we’ve computed above.

w1 is the first left singular vector of XTY.

v1 is the first right singular vector of XTY.

More on PLS: 

Hoskuldsson A, “PLS Regression Methods,” J. Chemometerics, 1988

Abdi H, Partial Least Squares (PLS) Regression: 
https://www.utdallas.edu/~herve/Abdi-PLS-pretty.pdf



PCR and PLS Feature Scores

The process of initially computing the feature scores to be 
considered in principal component regression uses…?

The process of initially computing the feature scores to be 
considered in partial least squares regression uses…?

(a)The X matrix only

(b)The Y matrix only

(c)Both the X and Y matrices



OLS vs PCR vs PLS

Suppose I have a data set with 

p = 400 features, n = 100 observations

If I want to learn a linear model, then what should I consider 
when using…

(a)Ordinary least squares regression

(b)Ridge regression

(c) Principal component regression (PCR)

(d)Partial least squares regression (PLS)



Canonical Correlation Analysis

Find the projection directions of maximum correlation for X
and Y.

In PLS we compute (X and Y are mean-centered):

𝑤𝑖
∗, 𝑣𝑖

∗ = 𝑎𝑟𝑔m𝑎𝑥
|𝑤𝑖|=1, 𝑣𝑖 =1

𝑋𝑤𝑖
𝑇(𝑌𝑣𝑖)

In canonical correlation analysis (CCA), we compute:

𝑤𝑖
∗, 𝑣𝑖

∗ = 𝑎𝑟𝑔m𝑎𝑥
|𝑋𝑤𝑖|=1, 𝑌𝑣𝑖 =1

𝑋𝑤𝑖
𝑇(𝑌𝑣𝑖)



Canonical Correlation Analysis

𝑤𝑖
∗, 𝑣𝑖

∗ = 𝑎𝑟𝑔m𝑎𝑥
|𝑋𝑤𝑖|=1, 𝑌𝑣𝑖 =1

𝑋𝑤𝑖
𝑇(𝑌𝑣𝑖)

This is equivalent to finding

𝑤∗, 𝑣∗ = 𝑎𝑟𝑔m𝑎𝑥
𝑤,𝑣∈ℝ𝑛

𝑤𝑇𝑋𝑇𝑌𝑣

𝑤𝑇𝑋𝑇𝑋𝑤 1/2 𝑣𝑇𝑌𝑇𝑌𝑣 1/2

Let 𝑋 = 𝑈𝐷𝑉𝑇. We define: 𝑋1/2 = 𝑈𝐷1/2𝑉𝑇

Then the desired 𝑤𝑖
∗, 𝑣𝑖

∗ are the singular vectors of:

𝑋𝑇𝑋 −1/2𝑋𝑇𝑌 𝑌𝑇𝑌 −1/2



Canonical Correlation Analysis

𝑤𝑖
∗, 𝑣𝑖

∗ = 𝑎𝑟𝑔m𝑎𝑥
|𝑋𝑤𝑖|=1, 𝑌𝑣𝑖 =1

𝑋𝑤𝑖
𝑇(𝑌𝑣𝑖)

𝑤𝑖
∗, 𝑣𝑖

∗ are the singular vectors of: 

𝑋𝑇𝑋 −1/2𝑋𝑇𝑌 𝑌𝑇𝑌 −1/2

w1 and v1 maximize the correlation between Xw and Yv. 

w2 and v2 do the same and are orthogonal to (respectively) 
w1 and v1 . Etc.

More:

http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf,  
http://www.ofai.at/~roman.rosipal/Papers/eig_book04.pdf



Canonical Correlation Analysis

Uses the singular vectors of: 𝑋𝑇𝑋 −1/2𝑋𝑇𝑌 𝑌𝑇𝑌 −1/2

Correlation: re-scales the data, no units. Range -1 to 1.

Analog to auto-scaling: if XTX is diagonal, then this 
divides each row of XT by the corresponding diagonal 
element of (XTX)1/2.

In the general case where XTX is not diagonal: this 
normalizes XT by “removing” covariance. 

“Whitens” the data.



PCA vs. CCA vs. PLS

Bie et al: http://www.ofai.at/~roman.rosipal/Papers/eig_book04.pdf



PCA, PLS, CCA, MLR

From: Borga, 
M. 2001.

https://www.c
s.cmu.edu/~t
om/10701_sp1
1/slides/CCA_
tutorial.pdf



Recap
OLS find direction of max correlation between x's and y's

PCA finds the directions of maximal covariance of the x's 
(find the SVD of X or X'X)

PCR does a PCA for dimensionality reduction and then OLS 
(usually with feature selection)

PLS adjusts the PCA directions to a better job of predicting the y's. 
Finds the projection directions of X and Y which maximize their covariance.
Can be used when many features are correlated. 

CCA finds the projection directions of X and Y that maximize their correlation.

SVD of the 'whitened' 𝑋𝑇𝑌:  𝑋𝑇𝑋 −1/2𝑋𝑇𝑌 𝑌𝑇𝑌 −1/2

PCA and CCA are both using SVD to minimize reconstruction error or 
maximize variance/covariance


