Reinforcement Learning

Lyle Ungar

With images by Sutton & Barto and slides by
Heejin Jeong and Steven Chen

Examples of RL
Components of RL
state, action, reward, policy...
Key RL algorithms
Deep RL: AlphaGo

Outline, which won't make sense yet

¢ What is Reinforcement Learning?
¢ Model-based RL

o Markov Decision Process (MDP)
e Dynamic Programming

¢ Model-free RL:

o Exploration-Exploitation Trade-off
e TD methods; Q-Learning

e On- and off-policy learning

o Monte Carlo Methods

¢ Deep RL
o AlphaGo, AlphaZero

What is RL?

Reinforcement Learning Idea

Learn a function (policy)
that maximizes an
agent’s long-term reward
In an environment

state
Si

reward
R,

’_l Agent l

W

P
-~
P

.. | Environment J<

-

From Sutton Reinforcement Learning: An Introduction (2016 draft)

action

Tic-Tac-Toe Example

X100
O|X|X
X

opponent's move {

our move {

opponent's move {

v', 3 "
\
our move AR
.
-~
"-' ’ﬂ
- r' '
*

opponent's move {

our move {

Sutton & Barto, Reinforcement Learning

¢ State
& Current board position

¢ Action

e Move
o Possible actions depend on state

¢ Policy
¢ Given state, what action to take

¢ Reward
e -1/0/1 for lose/tie/win
e 0 for all intermediate states

o Exploration policy
o Search to find out what happens and how
good each state is.
o Exploitation policy
o Use what was learned to do well.

Examples of RL

¢ Robotics
+ Playing games

4 Blddlng Stanford Autonomous Helicopter
L] https://www.youtube.com/watch?v=M-QUkgk3HyE
¢ Optimizing chemical reactions

¢ Showing ads
¢ Chatbot conversation

https://towardsdatascience.com/applications-of-
reinforcement-learning-in-real-world-1a94955bcd12

https://www.youtube.com/watch?v=M-QUkgk3HyE
https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12

RL Challenges

¢ Often a long sequence of actions before you
discover consequences of the actions

e E.g., win orlose game only after moves are complete
¢ Never see the result of actions not taken

¢ Never told what the best action was

RL Types

¢ Model based
o Explicitly learn p(su4|s;, ay) , r(s;, a)
o Markov Decision Process (MDP)
¢ Model free
o Learn expected value of each state, V(s;), given a policy
o Learn expected value of each state and action, Q(s; a;
o Learn an optimal policy, while learning V or Q
= Can learn on- and off-policy
State can be discrete or real, Vand Q can be neural nets

Mouse in Maze Example

A mouse (or robot) is placed in a maze

e On each trial, starts on a lettered square

o Can move to any adjacent square, except for the maroon one.
e Ifland in a lettered square, nothing happens.

f land in Food get fruit loops (+1) and leave maze.

f land in Shock get a mild shock (-1) and leave maze.

nitially no knowledge.

A B C Food

Shock

Mouse in Maze (‘gridworld’) Example

Goal: learn optimal policy e.g. by learning value of every square
e Initial values all setto 0

e On each trial, move through maze until exit.

o Update values of squares as you leave them.

o Do many trials to learn values of every square.

This is model free:
TD(0): update
immediately rather than
at the end of the
‘episode’.

Food

o w

Shock

o« [N w] o >

| ox|] oml oo

YR

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S) « V(S)+alR+V(S') — V(9)]
S+« 95

until S is terminal

Source: Reinforcement Learning: An Introduction (Sutton, R., Barto A.)

Mouse in Maze Example

< Update rule for value V/(s) of square s you just left, when entering
square s’

o AV=c(V(s)-V(s)+R(s))

e V(s)and V(s’) are the values of the two squares before the update.
o After update V(s) = V(s) + AV.

e R(s)is the reward you get when leaving square s.

e The constant c is the learning rate.

B Food

0

Shock

o« [N w) o >

| ox| oml oo
o

Courtesy Lyle Ungar

Mouse In

Maze Example

Trial1: A=» B = C = Food = Get reward 1 and exit

o Define V(exit) =
e AV=0.5(V(s')-V(s) +
o New value of A: V(A)
o New value of B: V(B)
o New value of C: V(C)
e New va

ue of Food: V(Food

0, always.

R(s)
+0.5

+0.5
+0.5

R(A))
R(B))
R(C)

d)

Food

(B) - V(A) +
(C)-V(B) +
(Food) - V(C) +
0.5 (V(Exit)-V(Foo

—

)
v 0
V 0

N o 7N

V)=0
+ + R(Food)) = 0.5

B
0

0

Food

B
0 0.5

Shock

0

Shock

0

I
0

o« ol w] o >

G
0

| ox] om| oo

o [N w) o >

T ox] om| oo

G
0 0

Values before trial

Values after trial

Mouse in Maze Example

Trial 2: A=>» B = C =» Food = Get reward 1 and exit
o New value of A: V(A) + 0.5 (V(B) - V(A) + R(A)) =0
o New value of B: V(B) + 0.5 (V(C) - V(B) + R(B)) =0
o New value of C: V(C) + 0.5 (V(Food) - V(C) + R(C)) = 0.2
o New value of Food: V(Food) + 0.5 (V(EXxit)-V(Food) + R(

(
(
) + Food)) 0.75

B Food B Food

A C A C

0 0 0 0.5 0 0 0.25 |(0.75

D E Shock D E Shock
0 0 0 9 0 0 0

J G H | J G H |

0 0 0 0 0 0 0 0

Values before trial Values after trial

Mouse in Maze Example

¢ After many trials learn values

Food
1.00

Shock
-1.00

0.705 10.655 (0.611 {0.388

Values after convergence

What is implicit in these values?

Mouse in Maze Example

¢ \What would the value of A be under an optimal policy with
no discounting and deterministic motion?

Food

Shock

o (e w) o >

o T o m o Ne)

= S

Markov Decision Process (MDP)

Model-based RL

¢ HMM

MDPs generalize HMMs

M = Markov
transition matrix
B = emission
matrix

M@ Different
transition matrix for
each action, a

Emission, X,
includes reward, R;

MDP Example {rgen)

d .
. State: agent position sTE L A
. g p . : S.. | Environment J<—
- Action: up, down, left, right
. eXClu din g a Cti On S th at Cau S e C O”i Si On S From Sutton Reinforcement Learning: An Introduction (2016 draft)
- Transition: where you actually R
move (depends on state and action) 0 o o o
. Reward: 0 S
. 0 - have not reached exit) |
. 1 -reached good exit |

- -1 - reached bad exit Reward given after exiting

MDP Specification

Joint distribution p(s’,r|s,a) = Pr{Siy1 = s', Ry11 = r|St = s, Ay = a} can be
used to specify MDP

Traditional specification of MDP is 5-tuple (S, A(-),p(:|,),r(-,-,),) where
e § is a finite set of states
o A(s) is a finite set of actions
o p(s'|s,a) = Pr(siq1 =5'|Se =s,Ar =a) =) cpp(s,7|s,a)

o 7(s,a,5") =E[Ri11|S: = 5,4 =a,Si41 =] = ZTE?(ZZS(;;WS»G)

e v € [0,1] is the discount factor

Goal: Find policy a; = 7(s¢) that maximizes long term return

0

Gt = Riy1 +YRis2 + V*Rips + VP Riga + - = Z V* Ritii1
k=0

Notation summary

® S state

* V(s value

¢ a, = 7(s;) action (and policy r)

®Y discount factor

& 1(s,,a,,S,1) reward (usually simply r(Sy1)=Ru+)

* G expected discounted reward (‘return’)

& D(Si+4/S,a)) model

MDP generalize to NNets

¢ S state — a vector
L X1 action — a vector
¢ V(s;) value — a nonlinear function of s,

& p(si./s,,a;) model — a nonlinear function of s;and a
o Often deterministic: sy = f(s,,a;)

Policy, Value, and Q Values

Policy Specific Optimal

e Policy (could be stochastic): 7(a|s) e Policy (deterministic):

e Value:
m*(s) = argmax ¢.(s, a)
Vr(8) = Ex [G¢| St =] a
=K, Z’}/th+k+1|St = S] e Value:
k=0

V4 (8) = max v, (s)
e Q value: T
= max g. (s, a)
0r(5,0) = E, [G1]S: = s, 4; = d :

e () value:

=K, Z'Vth-l—k-l—ﬂSt =sA; =a

k=0

g« (s,a) = max q,(s,a)

Questions

¢ What is V(A)?

¢ Whatis R(A)?

¢ What is q(A, move to D)?
¢ What is 7*(A)?

¢ What are possible reasons
that V(A) < 1?7

Food
1.00

Shock
-1.00

0.705 |0.655 |0.611

0.388

Bellman’s Equation

Ur(s) = Ex [_Gt‘St = 5]

= Ex Z’Yth+k+1|St =S
| k=0
—]E’T(' Rt—l—l + /yzfyth—Fkﬁ—l—Q‘St — S]
_ k=0
= ZW(CL‘S) ZP(S’,T!S,@) r 4+ vE, ZVth+k+2\St+1 _ S'”
a s',r E—0
=Y w(als) > p(s',rls,a) [r +yvx(s)] Vs €S

Recurrence relation for Value

Bellman’s Equation

Bellman’s Equation: Holds for all policies 7 (a|s)

v (8) = Zﬂ(a|s) Zp(s’,ﬂs,a) [r +yvs(s")],Vs € S

qr(s,a) = Zp(s’,r]s, a)[r +yv:(s")],Vs € S,Va € A(s)

s’',r

Bellman’s Optimality Equation: Holds for optimal policies 7*(s)

* — /7) * / ,\V/ GS
U (8) arenjé);p(s rls,a) [r + yvi(s')], Vs

ge(s,a) =Y p(s',rs,a) [7" +ymaxg.(s)| Vs € S,Va € A(s)

s',r

Model-based Methods:
Dynamic Programming

Interleave:
Policy Evaluation: Estimate v, using Bellman’s equation
Policy Improvement: Improve T using v,

Policy Evaluation

Compute v, for an arbitrary policy m
Turn Bellman’s Equation into an update rule to find a fixed point

Randomly initialize initial approximation v

Vgt1(8) = Zw(a|s) Zp(s’,r]s, a) [r+ yvk(s')]

Bellman’s Equation shows that v, = v, is a fixed point for this update rule

Sequence {vi} — v, as k — oo.

Policy Improvement

Greedily update policy 7(s) — 7'(s)
Initialize a random policy mg

m'(s) = argznaXZp(s', r|s,a) [r + yv.(s')]

s',r

Policy gives a strictly better policy except when original policy is already optimal

Policy lteration

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A+0
For each s € &:
v« V(s)
V(s) < Xy, p(s', 7|5, 7(s)) [r + V(5]
A + max(A, |v =V (s)|)

until A < @ (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € §:
old-action + m(s)
m(s) « argmax,) ., .p(s',7|s,a) [r + 7V (s)]
If old-action # m(s), then policy-stable < false
If policy-stable, then stop and return V =~ v, and 7 = m,; else go to 2

Assuming det erminist iC p01icy 7T (S) From Sutton Reinforcement Learning: An Introduction (2016 draft)

Generalized Policy Iteration

evaluation

¢ Policy iteration alternates between Policy T~
Evaluation and Policy Improvement /\

¢ Value iteration performs a single iteration of
Policy Evaluation in between each Policy improvement
Improvement '

& Generalized policy iteration interleaves
Policy Evaluation and Policy Improvement
arbitrarily

™ V

Tx 2

Model-free methods

On policy

o SARGSA (State-Action-Reward-State-Action)
Off policy

o Q-learning

On or off policy control

¢ Target policy, m: policy that we want to update
¢ Action (behavior) policy, u: policy for choosing an action

¢ On-policy Control
e Learn policy 7z using experience sampled from target policy 7
o (u=m)
¢ Off-policy Control
e Learn policy 7z using experience sampled from different policy u
o (u#m)
o Safe exploration
e Learn by observing others

Exploration-Exploitation Trade-off

State: |S| =1

Action: a; : pulling ktharm (k = 1, --- N)
Gambling Machines: Return 1 with
unknown probability p, and 0 otherwise
Reward = 1 or 0

Cost: waste in making a suboptimal pull

Should | select the best arm based
on my current knowledge?
Or should | explore other arms?

e-greedy Exploration

¢ Continual exploration
o With probability €, perform a randomly selected action
o With probability 1 — €, perform a greedy action

¢ For any e-greedy policy, the e-greedy policy u with
respect to Q™ is an improvement

¢ Time-varying € = ¢;

no

€ =
t Nno+visits(st)

An annealing schedule

0 600
n(st)

SARSA (State-Action-Reward-State-Action)

Sarsa (on-policy TD control) for estimating @) = q.

Initialize Q(s, a), for all s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A) + Q(S,A) + « [R +~vQ(S", A") — Q(S, A)]
S« S A A';

until .S is terminal

Source: Introduction to Reinforcement learning by Sutton and Barto —Chapter 6

On-policy, model-free

Q-LEARNING

Temporal Difference (TD) Learning
Off-policy, model-free

Temporal Difference (TD) Prediction

& 1D learns from current predictions rather than waiting until
termination

¢ TD(0): One-step look ahead

o V(sy) « V(sp) +a(ry +yV(sts1) —V(se))

el
TD target

Q-learning: Off-policy TD(0)

¢ On experience < s;, a;, 1:,S;+1 > With greedy target policy
Q(sp,ar) « Q(spar) +a (Tt +v0Q (5t+1» 7T(St+1)) — Q(s¢, at))

. : el _ N — T
a : Learning rate D target = max Q(Se+1,a") = V7 (S41)

o Convergence is guaranteed for discrete S, A if:

« Yrap =, Ypap <o (a€(0,1)

= All (s,a) pairs are visited infinitely often

*Proof in [Watkins & Dayan 1992]

Q-learning : Off-policy TD(0)

Q-learning (off-policy TD control) for estimating 7 ~ m,

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]
S« S
until S is terminal

Source: Introduction to Reinforcement learning by Sutton and Barto — Chapter 6

*When your subsequent state s,,; = S’ is a terminal state, your "expected
future total reward” is just the immediate reward, 7y + yrp4q + -+

MONTE CARLO RL

Monte Carlo (MC) Methods in RL

¢ Estimate expected reward by samplmg

. kaRHka = s]

k=0

e avoids full search
o defined for episodic tasks

b

MC

terminal state

Monte Carlo (MC) Prediction

L 2 REturn, Gt — Tt+1 +)/TH_Z + -+ yT_1Tt+T

In MC, use empirical mean return starting from
s, or (s¢, a;) instead of expected return for

V™(s¢) or Q™ (s, a)

& V™ (s) = average of the returns following all the
visits to s in a set of episodes

e Q™ (s,a) = average of the returns following all
the visits to (s, a) in a set of episodes

Monte Carlo Updates

Sample an episode following
/ the current action policy

(obtain a return, G, of the episode)
evaluation

m
" 2

improvement

Update the action value with /
the average of [G, G, -+, Gy]

*Image from Sutton Reinforcement Learning: An Introduction (2016 draft)

Monte Carlo vs. Q-learning

¢ MC: High Variance, Low Bias
e Less sensitive to initial Q values

¢ Q-learning (TD): Low Variance, High Bias
e Online learning is possible. We wait only one time step!

e For applications with long episodes: delaying all learning
until an episode’s end is too slow

o Needed for non-episodic (continuing) tasks

e In practice, TD methods converge faster than constant a
MC methods on stochastic tasks

Summary

full
backups

sample
backups

Dynamic Exhaustri1ve
programming searc

A

Monte Carlo
\ Temporal-

difference
learning
~ . .
shallow bootstrapping, A deep *
backups backups

:

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

ecent Achievements in RL

00:01:00

Silver et al. Mastering the game of Go without human knowledge. Nature 2017.

Drifting Car
——————y

Levine et al., Learning hand-eye coordination for robotic grasping Cutler and How, Autonomous drifting using simulation-
with deep learning and large-scale data collection. Arxiv 2016 aided reinforcement learning. ICRA 2016.

Robot Manipulator

Power Utilization

High PUE ML Control On ML Control Off

/ \

Low PUE

21/12246258/google-deepmind-
ai-data-center-cooling

Mastering Chess and Shogi by Self-
Play with a General Reinforcement
Learning Algorithm

Starting from random play, and given no domain
knowledge except the game rules, AlphaZero achieved
within 24 hours a superhuman level of play in the
games of chess and shogi (Japanese chess) as well as
Go, and convincingly defeated a world-champion

program in each case.
https://arxiv.org/pdf/1712.01815.pdf

What you should know

¢S,AV,QR,v,G

¢ Model based vs. model free RL
o POMDP

¢ Exploration/exploitation

+ On policy / off policy

¢ Q-learning (TD)

