Reinforcement Learning

Lyle Ungar

With images by Sutton & Barto and slides by Heejin Jeong and Steven Chen

Examples of RL Components of RL state, action, reward, policy... Key RL algorithms Deep RL: AlphaGo

Outline, which won't make sense yet

What is Reinforcement Learning?

Model-based RL

- Markov Decision Process (MDP)
- Dynamic Programming

Model-free RL:

- Exploration-Exploitation Trade-off
- TD methods; Q-Learning
- On- and off-policy learning
- Monte Carlo Methods

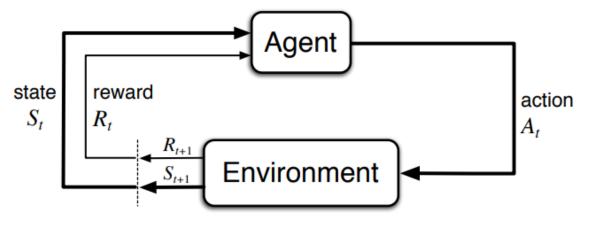
Deep RL

• AlphaGo, AlphaZero

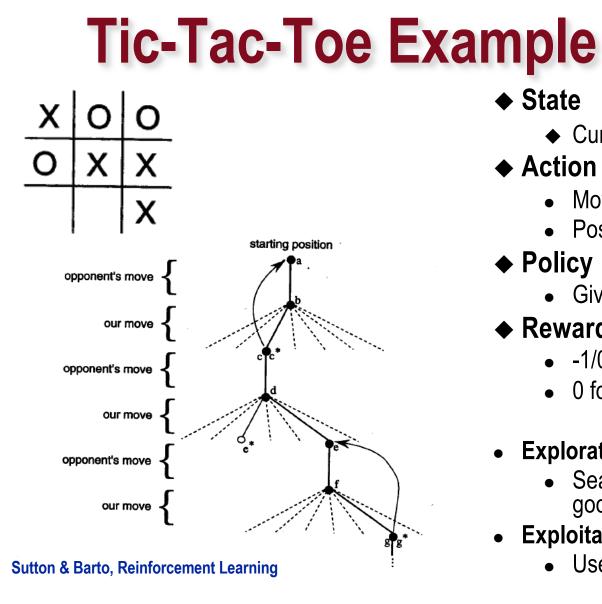
What is RL?

Reinforcement Learning Idea

Learn a function (policy) that maximizes an agent's long-term reward in an environment



From Sutton Reinforcement Learning: An Introduction (2016 draft)



♦ State

- Current board position
- Action
 - Move
 - Possible actions depend on state

Policy

• Given state, what action to take

Reward

- -1/0/1 for lose/tie/win
- 0 for all intermediate states
- **Exploration policy**
 - Search to find out what happens and how good each state is.
- **Exploitation policy**
 - Use what was learned to do well.

Examples of RL

- Robotics
- Playing games
- Bidding

Stanford Autonomous Helicopter https://www.youtube.com/watch?v=M-QUkgk3HyE

- Optimizing chemical reactions
- Showing ads
- Chatbot conversation

https://towardsdatascience.com/applications-ofreinforcement-learning-in-real-world-1a94955bcd12

RL Challenges

- Often a long sequence of actions before you discover consequences of the actions
 - E.g., win or lose game only after moves are complete
- Never see the result of actions not taken
- Never told what the best action was

RL Types

Model based

- Explicitly learn $p(s_{t+1}|s_t, a_t)$, $r(s_t, a_t)$
- Markov Decision Process (MDP)

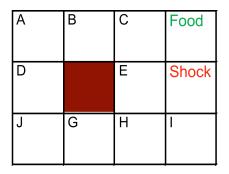
Model free

- Learn expected value of each state, $V(s_t)$, given a policy
- Learn expected value of each state and action, $Q(s_t, a_t)$
- Learn an optimal policy, while learning V or Q
 - Can learn on- and off-policy

State can be discrete or real, V and Q can be neural nets

A mouse (or robot) is placed in a maze

- On each trial, starts on a lettered square
- Can move to any adjacent square, except for the maroon one.
- If land in a lettered square, nothing happens.
- If land in Food get fruit loops (+1) and leave maze.
- If land in Shock get a mild shock (-1) and leave maze.
- Initially no knowledge.



Mouse in Maze ('gridworld') Example

Goal: learn optimal policy e.g. by learning value of every square

- Initial values all set to 0
- On each trial, move through maze until exit.
- Update values of squares as you leave them.
- Do many trials to learn values of every square.

This is model free: TD(0): update immediately rather than at the end of the 'episode'.

A	В	C	Food
0	0	0	0
D		E	Shock
0		0	0
0	G	H	l
1	0	0	0

Tabular TD(0) for estimating v_{π}

Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0, 1]$ Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0Loop for each episode: Initialize SLoop for each step of episode: $A \leftarrow$ action given by π for STake action A, observe R, S' $V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$ $S \leftarrow S'$ until S is terminal

Source: Reinforcement Learning: An Introduction (Sutton, R., Barto A.)

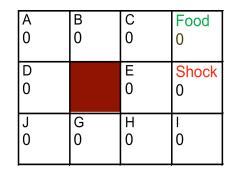
- Update rule for value V(s) of square s you just left, when entering square s'
 - $\Delta V = c (V(s') V(s) + R(s))$
 - V(s) and V(s') are the values of the two squares before the update.
 - After update $V(s) = V(s) + \Delta V$.
 - *R*(*s*) is the reward you get when leaving square s.
 - The constant *c* is the learning rate.

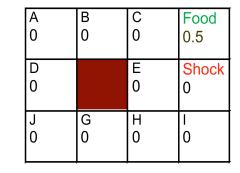
A	В	C	Food
0	0	0	0
D 0		E 0	Shock 0
0	G	H	l
J	0	0	0

Courtesy Lyle Ungar

Trial 1: A \rightarrow B \rightarrow C \rightarrow Food \rightarrow Get reward 1 and exit

- Define V(exit) = 0, always.
- $\Delta V = 0.5 (V(s') V(s) + R(s))$
- New value of A: V(A) + 0.5 (V(B) V(A) + R(A)) = 0
- New value of B: V(B) + 0.5 (V(C) V(B) + R(B)) = 0
- New value of C: V(C) + 0.5 (V(Food) V(C) + R(C)) = 0
- New value of Food: V(Food) + 0.5 (V(Exit)-V(Food) + R(Food)) = 0.5





Values before trial

Values after trial

Trial 2: $A \rightarrow B \rightarrow C \rightarrow Food \rightarrow Get reward 1 and exit$

- New value of A: V(A) + 0.5 (V(B) V(A) + R(A)) = 0
- New value of B: V(B) + 0.5 (V(C) V(B) + R(B)) = 0
- New value of C: V(C) + 0.5 (V(Food) V(C) + R(C)) = 0.25
- New value of Food: V(Food) + 0.5 (V(Exit)-V(Food) + R(Food)) = 0.75

A	В	C	Food
0	0	0	0.5
D		E	Shock
0		0	0
J	G	H	I
0	0	0	0

Values before trial

В С Food 0.25 0 0 0.75 Ε D Shock 0 0 0 Η J G 0 0 0 0

Values after trial

◆ After many trials learn values

A	B	C	Food
0.812	0.868	0.918	1.00
D		E	Shock
0.762		0.660	-1.00
J	G	H	l
0.705	0.655	0.611	0.388

Values after convergence

What is implicit in these values?

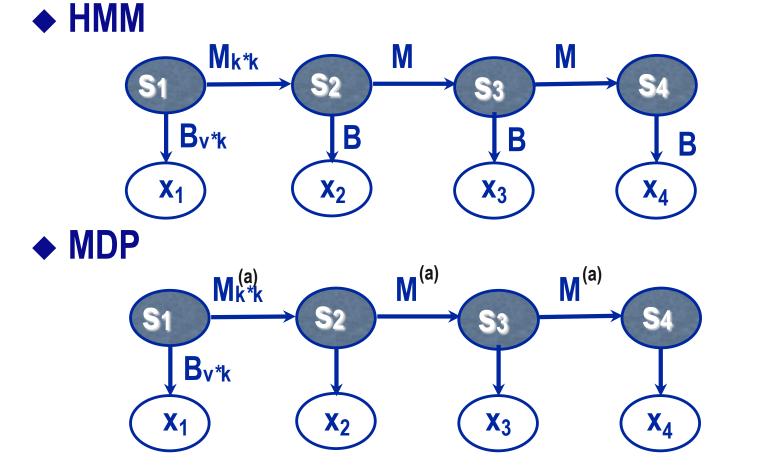
What would the value of A be under an optimal policy with no discounting and deterministic motion?

A	B	C	Food
0	0	0	0
D		E	Shock
0		0	0
J	G	H	I
0	0	0	0

Markov Decision Process (MDP)

Model-based RL

MDPs generalize HMMs



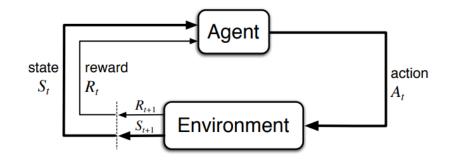
M = Markov
transition matrix
B = emission
matrix

M^(a) Different transition matrix for each action, a

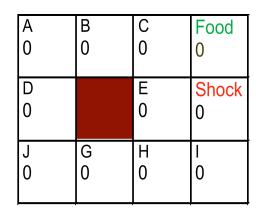
Emission, \mathbf{x}_t , includes reward, R_t

MDP Example

- State: agent position
- Action: up, down, left, right
 - excluding actions that cause collisions
- **Transition:** where you actually move (depends on state and action)
- Reward:
 - 0 have not reached exit
 - 1 reached good exit
 - -1 reached bad exit



From Sutton Reinforcement Learning: An Introduction (2016 draft)



Reward given after exiting

MDP Specification

Joint distribution $p(s', r|s, a) = Pr\{S_{t+1} = s', R_{t+1} = r|S_t = s, A_t = a\}$ can be used to specify MDP

Traditional specification of MDP is 5-tuple $(\mathcal{S}, \mathcal{A}(\cdot), p(\cdot|\cdot, \cdot), r(\cdot, \cdot, \cdot), \gamma)$ where

- \mathcal{S} is a finite set of states
- $\mathcal{A}(s)$ is a finite set of actions
- $p(s'|s,a) = Pr(s_{t+1} = s'|S_t = s, A_t = a) = \sum_{r \in \mathcal{R}} p(s', r|s, a)$

•
$$r(s, a, s') = \mathbb{E}[R_{t+1}|S_t = s, A_t = a, S_{t+1} = s'] = \frac{\sum_{r \in \mathcal{R}} rp(s', r|s, a)}{p(s'|s, a)}$$

• $\gamma \in [0,1]$ is the discount factor

Goal: Find policy $a_t = \pi(s_t)$ that maximizes long term return

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{k+t+1}$$

Notation summary

- ◆ s_t state
- $V(s_t)$ value
- $a_t = \pi(s_t)$ action (and policy π)
- γ discount factor
- $r(s_t, a_t, s_{t+1})$ reward (usually simply $r(s_{t+1}) = R_{t+1}$)
- G_t expected discounted reward ('return')
- $p(s_{t+1}|s_t,a_t)$ model

MDP generalize to NNets

- s_t
 state a vector
- ◆ a_t action a vector
- $V(\mathbf{s}_t)$ value a nonlinear function of \mathbf{s}_t
- $p(\mathbf{s}_{t+1}|\mathbf{s}_{t},\mathbf{a}_{t})$ model a nonlinear function of \mathbf{s}_{t} and \mathbf{a}_{t}
 - Often deterministic: $s_{t+1} = f(s_t, a_t)$

Policy, Value, and Q Values

Policy Specific

- Policy (could be stochastic): $\pi(a|s)$
- Value:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | S_t = s \right]$$
$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]$$

• Q value:

$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right]$$
$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = sA_t = a \right]$$

Optimal

• Policy (deterministic):

$$\pi^*(s) = \operatorname*{argmax}_a q_*(s, a)$$

• Value:

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$
$$= \max_{a} q_*(s, a)$$

• **Q value**:
$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

Questions

- ♦ What is V(A)?
- ♦ What is R(A)?
- ♦ What is q(A, move to D)?
- What is $\pi^*(A)$?
- What are possible reasons that V(A) < 1?

A	B	C	Food
0.812	0.868	0.918	1.00
D		E	Shock
0.762		0.660	-1.00
J	G	H	l
0.705	0.655	0.611	0.388

Bellman's Equation

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi} \left[G_t | S_t = s \right] \\ &= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+k+2} | S_t = s \right] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+2} | S_{t+1} = s' \right] \right] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right], \forall s \in \mathcal{S} \end{aligned}$$

Recurrence relation for Value

Bellman's Equation

Bellman's Equation: Holds for all policies $\pi(a|s)$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right], \forall s \in \mathcal{S}$$

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right], \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$

Bellman's Optimality Equation: Holds for optimal policies $\pi^*(s)$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r | s, a) \left[r + \gamma v_*(s') \right], \forall s \in \mathcal{S}$$

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s') \right], \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$

Model-based Methods: Dynamic Programming

Interleave: *Policy Evaluation:* Estimate v_{π} using Bellman's equation *Policy Improvement:* Improve π using v_{π}

Policy Evaluation

Compute v_{π} for an arbitrary policy π

Turn Bellman's Equation into an update rule to find a fixed point

Randomly initialize initial approximation v_0

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

Bellman's Equation shows that $v_k = v_\pi$ is a fixed point for this update rule Sequence $\{v_k\} \to v_\pi$ as $k \to \infty$.

Policy Improvement

Greedily update policy $\pi(s) \to \pi'(s)$

Initialize a random policy π_0

$$\pi'(s) = \operatorname*{argmax}_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Policy gives a strictly better policy except when original policy is already optimal

Policy Iteration

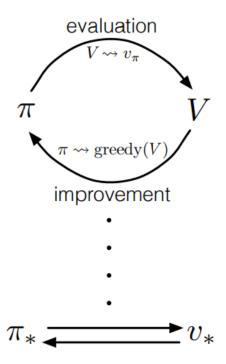
Policy iteration (using iterative policy evaluation) 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$ 2. Policy Evaluation Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) \left[r + \gamma V(s')\right]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number) 3. Policy Improvement policy-stable $\leftarrow true$ For each $s \in S$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If old-action $\neq \pi(s)$, then policy-stable \leftarrow false If *policy-stable*, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Assuming deterministic policy $\pi(s)$

From Sutton Reinforcement Learning: An Introduction (2016 draft)

Generalized Policy Iteration

- Policy iteration alternates between Policy Evaluation and Policy Improvement
- Value iteration performs a single iteration of Policy Evaluation in between each Policy Improvement
- Generalized policy iteration interleaves *Policy Evaluation* and *Policy Improvement* arbitrarily



From Sutton Reinforcement Learning: An Introduction (2016 draft)

Model-free methods

On policy

• SARSA (State-Action-Reward-State-Action)

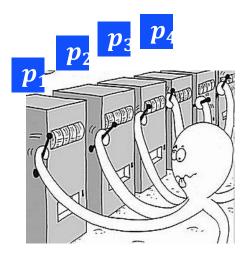
Off policy

• Q-learning

On or off policy control

- Target policy, π : policy that we want to update
- Action (behavior) policy, μ : policy for choosing an action
- On-policy Control
 - Learn policy π using experience sampled from target policy π
 - $(\mu = \pi)$
- Off-policy Control
 - Learn policy π using experience sampled from different policy μ
 - $(\mu \neq \pi)$
 - Safe exploration
 - Learn by observing others

Exploration-Exploitation Trade-off



State: |S| = 1Action: a_k : pulling kth arm ($k = 1, \dots N$) Gambling Machines: Return 1 with unknown probability p_k and 0 otherwise Reward = 1 or 0 Cost: waste in making a suboptimal pull

Should I select the best arm based on my current knowledge? Or should I explore other arms?

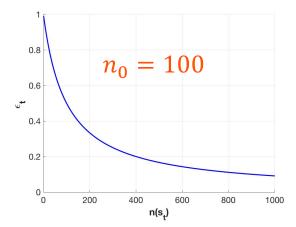
ϵ -greedy Exploration

Continual exploration

- With probability ϵ , perform a randomly selected action
- With probability 1ϵ , perform a greedy action
- For any ϵ -greedy policy, the ϵ -greedy policy μ with respect to Q^{π} is an improvement
- Time-varying $\epsilon = \epsilon_t$

$$\epsilon_t = \frac{n_0}{n_0 + visits(s_t)}$$

An annealing schedule



SARSA (State-Action-Reward-State-Action)

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Initialize Q(s, a), for all $s \in S$, $a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., ϵ -greedy)

Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ϵ -greedy)

 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma Q(S', A') - Q(S, A) \right]$

 $S \leftarrow S'; A \leftarrow A';$

until S is terminal

Source: Introduction to Reinforcement learning by Sutton and Barto — Chapter 6

On-policy, model-free

Q-LEARNING

Temporal Difference (TD) Learning Off-policy, model-free

Temporal Difference (TD) Prediction

- TD learns from current predictions rather than waiting until termination
- TD(0): One-step look ahead

•
$$V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$$

TD target

Q-learning: Off-policy TD(0)

- ♦ On experience < s_t, a_t, r_t, s_{t+1} > with greedy target policy π
 Q(s_t, a_t) ← Q(s_t, a_t) + α (r_t + γQ(s_{t+1}, π(s_{t+1})) Q(s_t, a_t))
 α : Learning rate TD target = max Q(s_{t+1}, a') = V^π(s_{t+1})
 • Convergence is guaranteed for discrete S, A if:
 - $\sum_t \alpha_t = \infty$, $\sum_t \alpha_t^2 < \infty \ (\alpha \in (0,1))$
 - All (s,a) pairs are visited infinitely often

*Proof in [Watkins & Dayan 1992]

Q-learning : Off-policy TD(0)

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize Q(s, a), for all $s \in S$, $a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$

$$S \leftarrow S'$$

until S is terminal

Source: Introduction to Reinforcement learning by Sutton and Barto — Chapter 6

* When your subsequent state $s_{t+1} = S'$ is a terminal state, your "expected future total reward" is just the immediate reward, $r_t + \gamma r_{t+1} + \cdots$

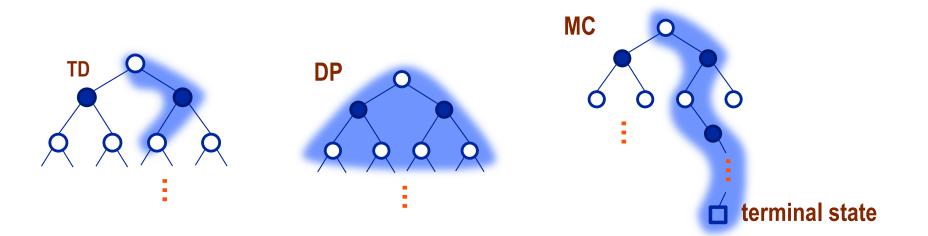
MONTE CARLO RL

Monte Carlo (MC) Methods in RL

Estimate expected reward by sampling

- avoids full search
- defined for episodic tasks

$$\mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]$$

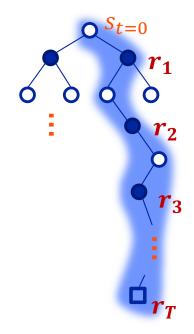


Monte Carlo (MC) Prediction

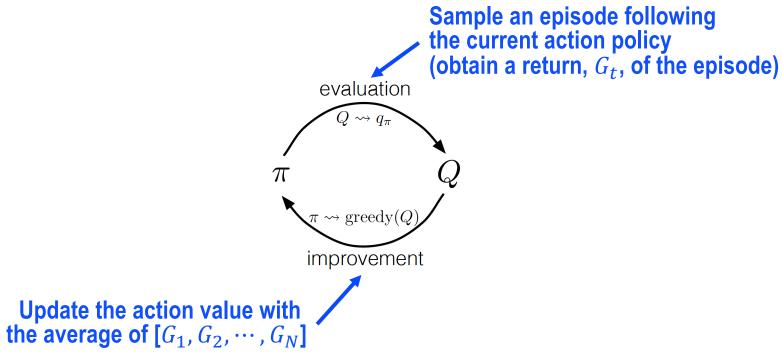
• **Return**, $G_t = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{T-1} r_{t+T}$

In MC, use empirical mean return starting from s_t or (s_t, a_t) instead of expected return for $V^{\pi}(s_t)$ or $Q^{\pi}(s, a)$

- V^π(s) = average of the returns following all the visits to s in a set of episodes
- Q^π(s, a) = average of the returns following all the visits to (s, a) in a set of episodes



Monte Carlo Updates



*Image from Sutton Reinforcement Learning: An Introduction (2016 draft)

Monte Carlo vs. Q-learning

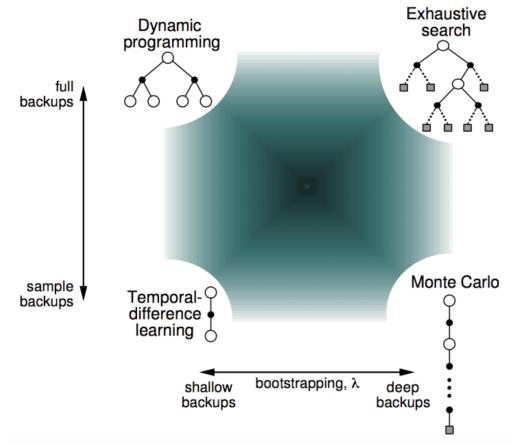
MC: High Variance, Low Bias

• Less sensitive to initial Q values

Q-learning (TD): Low Variance, High Bias

- Online learning is possible. We wait only one time step!
- For applications with **long episodes**: delaying all learning until an episode's end is too slow
- Needed for **non-episodic** (continuing) tasks
- In practice, TD methods converge faster than constant α MC methods on stochastic tasks

Summary



From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

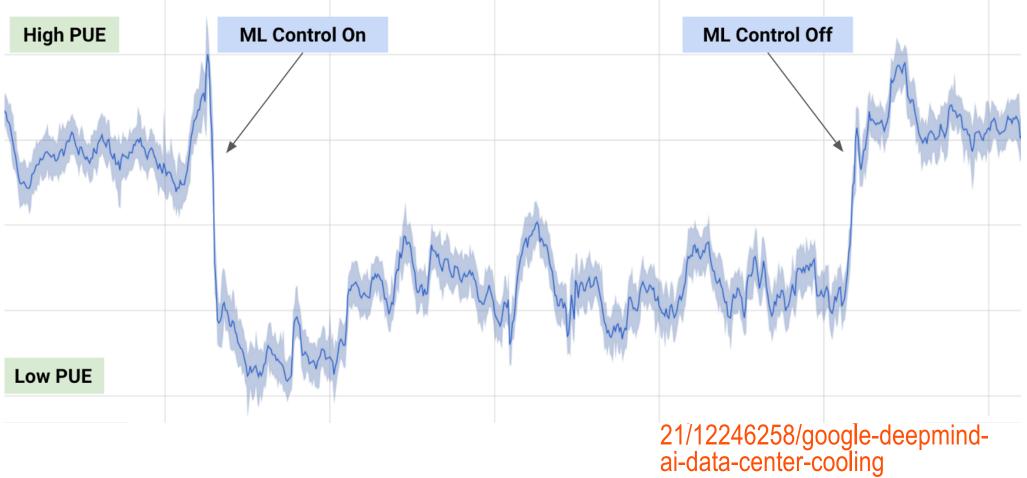
Recent Achievements in RL

Silver et al. Mastering the game of Go without human knowledge. Nature 2017.

Levine et al., Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Arxiv 2016

Cutler and How, Autonomous drifting using simulationaided reinforcement learning. ICRA 2016.

Power Utilization



Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Starting from random play, and given no domain knowledge except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in the games of chess and shogi (Japanese chess) as well as Go, and convincingly defeated a world-champion program in each case.

https://arxiv.org/pdf/1712.01815.pdf

What you should know

- S, A, V, Q, R, γ, G
- Model based vs. model free RL
 - POMDP
- Exploration/exploitation
- On policy / off policy
- Q-learning (TD)