Midterm feedback

+ Welcome back!
+ OSC: Don’t copy HW!!!
+ Midterm: returned today



Survey results

Consistent notation; correct quiz answers
More depth (math and application); more intuition & derivation
=« Recitation as review; no new material
= 100 much math in HW; too little in lecture
Slides and lecture notes more complete
Too fast
HW: too much; not clear enough; too many errors
= Autograder; Output shape for programming problems
= Ask for more explanation
Faster piazza response time



Unsupervised Learning

+ Spectral methods

« Eigenvector/singular vector decomposition (SVD)
« PCA, CCA

+ Reconstruction methods
« PCA, ICA, auto-encoders

+ Clustering and Probabilistic methods
o K-means

o (aussian mixtures
« Latent Dirichlet Allocation (LDA)



SVD

Learning objectives Lyle Ungar
SVD and ‘thin SVD”

Matrix norms
Generalized inverses



*

¢

*
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Eigenvectors (review)

Av,=A v,

Eigen-decomposition of a symmetric matrix A (n x n)
« A=VDV'

V: orthogonal, VTV=I (n x n)
« Columns of V are the eigenvectors of A

D: diagonal (n x n)
« Diagonal elements of D are the eigenvalues of A

o All non-negative if A = XX
« Reported in decreasing order of magnitude down the diagonal



We don’t compute eigenvectors

¢ What symmetric matrix have we seen?

# In practice we rarely compute eigenvectors
o Why not?



Singular Value Decomposition

« Singular value decomposition of matrix X (n x p)
« X=UDV'
«+ U: orthogonal, UTU=I (n x n)
« Columns of U are the left singular vectors of X
+ D: diagonal (n x p)
« Diagonal elements of D are the singular values of X
« V: orthogonal, V'V=I (p x p)
« Columns of V are the right singular vectors of X



SVD

Singular value decomposition of X: X = UDVT

X D

NS

Let k = min(n,p). Then: X = Zf‘=1 D;;u; v}

i

Since all u;, v; are unit vectors, the importance of the i'th
term in the sum is determined by the size of D;.



¢ X,=UDV'

¢ What are the dimensions of U D and V?
& What are the eigenvectors of XX?

& What are the eigenvalues of X'X?



Thin SVD - pick a smaller k

Singular value decomposition of X: X = UDVT

X D

NS

Let k = min(n,p). Then: X = Zf‘=1 D;;u; v}

i

Since all u;, v; are unit vectors, the importance of the i'th
term in the sum is determined by the size of D;.



SVD and eigenvalues/eigenvectors

X =UDVT, XTX =v(DTD)vT

The columns Va,---Vp of V are the eigenvectors of the covariance
matrix XTX. Hence we can write

p
XTX = > (Dy)? vvl
i=1

K
X = 2 Diiuiv’{
i=1
k = min(n,p).

D;; are singular values of X, (D;; )* are eigenvalues of XTX

From before:



Frobenius norm

¢ How to measure the size of a matrix?

n min{m,n}

Allp = \fj )l = yfercelaA) =Y o)

¢ Where o, are the singular values.
¢ One can also use an L, norm ||A||, = ||o]| 4



Generalized Inverses

¢ Linear regression estimates win y = Xw

& This uses a pseudo-inverse (“Moore-Penrose inverse”)
X of X, so
o W =X*y
¢ Thus far, we have done this by
o X7 = ()(TX)_ 7XT



Generalized Inverses

¢ We can also compute inverses using SVD
¢ The idea:
Xt =(UA VDT = yA-LUT
¢ You can’t take the inverse of a rectangular matrix,
but we can approximate it using the thin SVD

Xt=V,A'UT



Pseudo-inverse of X=UD VT

¢ What are the dimensions of X*=V D1 UT

¢ Whatis X X,*
e XX*=UDVTVD'UT



Power Method

¢ Power method for a square matrix A
o Writteanyx=2,z v, wherez=v,'x
o ThenAX=A2 zvi=2ZAvV=2zZ AV,
o SOAAAAX=A ==3%zZ NV,
+ Find the largest eigenvalue/eigenvector

o Project it off from x and repeat
n X:=X— (VX)X



Fast ‘Randomized’ SVD

¢ Generalizes the power method

¢ Input:
e matrix A of size n X p,
o the desired hidden state dimension k,
o the number of “extra” singular vectors, |

< Simultaneously find all the largest singular
values/vectors by alternately left and right multiplying
by A



Randomized SVD

1. Generate a (k + [) X nrandom matrix €2
2. Find the SVD U1D1V1T of QA, and keep the k + [ components of V; with the largest singular values
3. Find the SVD U2D2V2T of AV, and keep the ‘largest’ k + [ components of U,

4. Find the SVD U;D; Vfgnal of U] A, and keep the ‘largest’ k components of Vi,

5. Find the SVD UfinalD4V4T of AVina and keep the ‘largest’ k components of Uging

Output: The left and right singular vectors Ufiyqa, fon 4l

You are not required to know this



What you should know

¢ Eigenvalues/vectors & singular values/vectors
¢ Eigenvectors as a basis

¢ Thin SVD

¢ Frobenius norm

¢ Pseudo (“Moore-Penrose”) inverse

¢ Power method



¢ What is an efficient way to do linear regression?
o W= (XX)"XTy
e How does it scale with n and p?



