

Lyle Ungar, University of Pennsylvania

• Given the hyperplane defined by the line

- $y = x_1 2x_2$
- $y = (1, -2)^T x = w^T x$

Is this point correctly predicted?

1)
$$y = 1, x = (1,0)$$
?A. Yes
B. No2) $y = 1, x = (1,1)$?

Given the hyperplane defined by the line

•
$$y = x_1 - 2x_2$$

•
$$y = (1, -2)^T x$$

So (1,0) having y=1 is correct and (1,1) having y=1 is not correct

Projections

◆ The projection of a point x onto a line w is x^T w/|w|₂
 ◆ The distance of a point x to a hyperplane

defined by the line w is

 $\mathbf{x}^{\mathsf{T}} \mathbf{w} / |\mathbf{w}|_2$

Why?

- The projection of a point x on a plane defined by a line w is x^T w/|w|₂
- The distance of x from the hyperplane defined by (1, -2) is what

- The projection of a point x on a plane defined by a line w is x^T w/|w|₂
- The distance of x from the hyperplane defined by (1, -2) is what
 - for x = (-1,2) $\sqrt{5}$
 - for x = (1,0) $1/\sqrt{5}$
 - for x = (1,1) $1/\sqrt{5}$

project onto the line $x^{T} (1 - 2)/\sqrt{(1^{2} + (-2)^{2})} =$ $x^{T} (1 - 2)/\sqrt{5}$

◆ True or False? When solving for a hyperplane specified by w^Tx + b = 0 one can always set the margin to 1;

$$\mathbf{w}^{\top}\mathbf{x}_1 + b = -1$$
 and $\mathbf{w}^{\top}\mathbf{x}_2 + b = 1$

- ◆ True or False? When solving for a hyperplane specified by w^Tx + b = 0 one can always set the margin to 1;
- $\mathbf{w}^{\top}\mathbf{x}_1 + b = -1$ and $\mathbf{w}^{\top}\mathbf{x}_2 + b = 1$

True (as long as it is separable)

◆ True or False? When solving for a hyperplane specified by w^Tx + b = 0 one can always set the margin to 1;

 $\mathbf{w}^{\top}\mathbf{x}_1 + b = -1$ and $\mathbf{w}^{\top}\mathbf{x}_2 + b = 1$

True or False? This then implies that the margin, the distance of the support vectors from the separating hyperplane, is

$$\frac{\mathbf{w}^{\mathsf{T}}}{2||\mathbf{w}||_2}(\mathbf{x}_2 - \mathbf{x}_1) = \frac{1}{||\mathbf{w}||_2}$$

◆ True or False? When solving for a hyperplane specified by w^Tx + b = 0 one can always set the margin to 1;

 $\mathbf{w}^{\top}\mathbf{x}_1 + b = -1$ and $\mathbf{w}^{\top}\mathbf{x}_2 + b = 1$ True

True or False? This then implies that the margin, the distance of the support vectors from the separating hyperplane, is

$$\frac{\mathbf{w}}{2||\mathbf{w}||_2}(\mathbf{x}_2 - \mathbf{x}_1) = \frac{1}{||\mathbf{w}||_2}$$

True

(non)separable SVMs

- True or False? In a real problem, you should check to see if the SVM is separable and then include slack variables if it is not separable.
- True or False? Linear SVMs have no hyperparameters that need to be set by cross-validation

(non)separable SVMs

True or False? In a real problem, you should check to see if the SVM is separable and then include slack variables if it is not separable.

False: you can just run the slack variable problem in either case (but you need to pick C)

- True or False? Linear SVMs have no hyperparameters that need to be set by cross-validation
- False: you need to pick C
- *True or False?* Adding slack variables is equivalent to requiring that all of the α_i are less than a constant in the dual $\mathbf{w}^{\top}\phi(\mathbf{x}) + b = \sum_i \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b$

Non-separable SVMs

 True or False? A support vector could be inside the margin.

Non-separable SVMs

- \mathbf{x}_2 , \mathbf{x}_3 have y=1, while \mathbf{x}_4 has y = -1
- All are co-linear

At what location does \boldsymbol{x}_3 become a support vector?

True/False? It just needs to be closer to x_{4} , than x_{2} is

Non-separable SVMs - dual

Consider the following cases

- a point \mathbf{x}_1 is on the correct side of the margin a point \mathbf{x}_2 is on the margin a point \mathbf{x}_3 is on the wrong side of the margin a point \mathbf{x}_4 is on the wrong side of the decision hyperplane

A)
$$\alpha_i = 0$$

B) $\alpha_i < C$
C) $\alpha_i = C$

Hinge dual:

$$\max_{\alpha \ge 0} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0, \quad \alpha_{i} \le C, \quad i = 1, \dots, n$$

Non-separable SVMs - dual

Consider the following cases

- nonbinding

- 1) a point \mathbf{x}_1 is on the correct side of the margin $\alpha_i = 0$ nonbindin 2) a point \mathbf{x}_2 is on the margin $\alpha_i < C$ 3) a point \mathbf{x}_3 is on the wrong side of the margin $\alpha_i = C$ 4) a point \mathbf{x}_4 is on the wrong side of the decision hyperplane $\alpha_i = C$

If a point is on the wrong side of the margin (cases 3 and 4), $\xi_i > 0$ and hence $\lambda_i = 0$ (last term of the first equation below; λ_i is the Lagrange multiplier for the *i*th slack variable ξ_i), and hence $\alpha_i = C$

If a point is on the margin (case 2), then $\xi_i = 0$, and λ_i can be greater than zero so in general $\alpha_i < C$.

$$\begin{split} L(\mathbf{w}, b, \xi, \alpha, \lambda) &= \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_{i} \xi_i + \sum_{i} \alpha_i (1 - \xi_i - y_i (\mathbf{w}^\top \mathbf{x}_i + b)) - \sum_{i} \lambda_i \xi_i \\ \frac{\partial L}{\partial \xi_i} &= 0 \quad \rightarrow \quad C - \alpha_i - \lambda_i = 0 \end{split}$$

Why do SVMs work well?

Why are SVMs fast?

Why are SVMs often more accurate than logistic regression?

Why do SVMs work well?

Why are SVMs fast?

- Quadratic optimization (convex!)
- They work in the dual, with relatively few points
- The kernel trick
- Why are SVMs often more accurate than logistic regression?
 - SVMs use kernels –but regression can, too
 - SVMs assume less about the model form
 - Logistic regression uses all the data points, assuming a probabilistic model, while SVMs ignore the points that are clearly correct, and give less

weight to ones that are wrong

Given the hyperplane defined by the line

- $y = x_1 2x_2$
- $y = (1, -2)^T x = w^T x$
- What is the minimal adjustment to w to make a new point y = 1, x = (1,1) be correctly classified?

• Given the hyperplane defined by the line

•
$$y = (1, -2)^T x = w^T x$$

What is the minimal adjustment to w to make a new point y = 1, x = (1,1) be correctly

classified?
$$x_2$$

 $y < 0$
 $(1,1)$
 $(1,-1)$
 x_1
 $(1,-2)$

