Active Learning & Experimental Design

by Barbara Engelhardt and Alex Shyr Modified by Daniel Ting Heavily modified, of course, by Lyle Ungar

Strategies for choosing which points to label

Active learning: sequential, *ad hoc* Experimental design: simultaneous, principled

Motivation

- ♦ Labeling data is often expensive
 - Unlabeled data is often cheap
- Not all labels are equally useful
- We want to collect the "best" data at minimal cost

What observations should one label?

Toy examples

Assume you are learning *y* = *ax*+*b* for *x* on [-1,1]. You can pick two *x*'s to get *y*'s for.

```
What two values would you pick?
A) -1/3, 1/3
B) -1, 1
C) 0, 1
D) Something else
```


Toy examples

- **Assume you are learning** y = f(x) **for** x **a scalar**
- You are learning an SVM classifier on [-1.1].
- You can pick 4 *x*'s to get *y*'s for.
- What strategy would you use to pick x's?
- A) Pick -1, -1/3, 1/3, 1
- B) Pick -1, 1, see what the answer is, then pick next x
- C) Pick -1/3, 1/3, see what the answer is, then pick next x
- D) Something else

Toy Example: 1D classifier 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Unlabeled data: labels are all 0 then all 1 (left to right)

Classifier (threshold function): $h_w(x) = 1$ if x > w (0 otherwise)

Goal: find transition between 0 and 1 labels in minimum steps

Naïve method: choose points to label at random on line

• Requires O(n) training data to find underlying classifier

Better method: binary search for transition between 0 and 1

- Requires O(log n) training data to find underlying classifier
- Exponential reduction in training data size!

Example: collaborative filtering

- Users usually rate only a few movies
 - ratings are "expensive"
- Which movies do you show users to best extrapolate movie preferences?

[Yu et al. 2006]

Example: collaborative filtering

• Baseline algorithms:

- Random: *m* movies randomly
- Most Popular Movies: *m* most frequently rated movies
- Most popular movies is not better than random design!
- Popular movies rated highly by all users; do not discriminate tastes

Active Learning

Active learning

- Uncertainty sampling
- Query by committee
- Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
 - Non-linear optimal experimental design

Active Learning

- Given existing knowledge (X,y), choose where to collect more labels
 - Assume access to cheap unlabeled points
 - Make a query to obtain expensive label
 - Want to find labels that are "informative"
 - Output: Classifier / predictor

Similar to "active learning" in classrooms

- Students ask questions, receive a response, and ask more questions
- Contrast: passive learning: student just listens to lecturer

Active Learning Setup

- Active learner picks which data point *x* to query
- ◆ Receive label ("response") y from an oracle
- Update parameters w of the model
- Repeat
- Query selected to minimize some loss function ("risk")

Active Learning

Heuristic methods for reducing risk:

- Select "most uncertain" data point
- Select "most informative" data point

Uncertainty Sampling

- Query the item (x) that the current classifier is most uncertain about
- Needs measure of uncertainty
- Examples:
 - Entropy
 - Least confident predicted label
 - Euclidean distance (e.g. point closest to margin in SVM)

When might this fail?

Example: Gene expression and Cancer classification

Data: Cancerous lung tissue samples

- "Cheap" unlabeled data
 - gene expression profiles from Affymetrix microarray
- Labeled data:
 - 0-1 label for adenocarcinoma or malignant pleural mesothelioma

Method:

- Linear SVM
- Measure of uncertainty: distance to SVM hyperplane

Liu 2004

Example: Gene expression and Cancer classification Active learning takes 31 points to achieve same accuracy as passive learning with 174

Which unlabeled point should you choose?

Yellow = valid hypotheses

Point on max-margin hyperplane does not reduce the number of valid hypotheses by much

 Queries an example based on the degree of disagreement between committee of classifiers

- Start with prior distribution over classifiers/hypotheses
- Sample a set of classifiers from distribution
- Natural for ensemble methods
 - Random forests, Bagged classifiers, etc.
- Measures of disagreement
 - Entropy of predicted responses
 - KL-divergence of predictive distributions

Query by Committee Application

Use Naïve Bayes model for text classification (20 Newsgroups dataset)

Information-based Loss Function

- ♦ Above methods looked at uncertainty at a single point
 - Does not look at expected effect of adding the point on the model
- Want to quantify information gained
 - Maximize KL divergence between posterior and prior $KL(P||\pi) = \#$ of bits gained about model
 - Maximize reduction in **model entropy** between posterior and prior (reduce number of bits required to describe distribution)
- ♦ All of these can be extended to optimal design algorithms
- Must decide how to handle uncertainty about query response, model parameters

[MacKay, 1992]

Kullback Leibler divergence

- ♦ P = true distribution;
- **Q** = alternative distribution that is used to encode data
- KL divergence is the expected extra message length per datum that must be transmitted using Q

 $KL(P \parallel Q) = \sum_{i} P(x_{i}) \log \left(\frac{P(x_{i})}{Q(x_{i})} \right)$

 $= -\sum_{i} P(x_{i}) \log Q(x_{i}) + \sum_{i} P(x_{i}) \log P(x_{i})$ = H(P,Q) - H(P)

= Cross-entropy - entropy

Measures how different the two distributions are

KL divergence as info gain

- The KL divergence of the posteriors measures the information gain expected from query (x'):
 KL(p(θ | x, x') || p(θ | x))
- Goal: choose a query that *maximizes* the KL divergence between the updated posterior probability and the current posterior probability
 - This represents the largest expected information gain

Active learning warning

- Choice of data is only as good as the model itself
- Assume a linear model, then two data points are sufficient
- What happens when data are not linear?

Active Learning = Sequential Experimental Design

♦ Active learning

- Uncertainty sampling
- Query by committee
- Information-based loss functions

Optimal experimental design

- A-optimal design
- D-optimal design
- E-optimal design
- Non-linear optimal experimental design

Optimal Experimental Design

- Active learning heuristics give empirically good performance but sometimes fail
- Optimal experimental design gives
 - theoretical criteria for choosing a set of points to label for a specific set of assumptions and objectives
 It fails, too, if the assumptions aren't met.

Optimal Experimental Design

- Given a model with parameters w,
 - What queries are maximally informative i.e. will yield the best estimate of *w*
- "Best" minimizes variance of estimate of w
- Linear models
 - Optimal design does not depend on w !
- Non-linear models
 - Depends on w; often use Taylor expansion to linear model

Goal: Minimize variance of *w*

If $y = x^T \beta + \varepsilon$ then $w = (X^T X)^{-1} X^T y$

 $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\beta}, \, \boldsymbol{\sigma}^2(\mathbf{X}^T \mathbf{X})^{-1}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \, \boldsymbol{\sigma}^2)$

We want to minimize the variance of our parameter estimate \mathbf{w} , so pick training data \mathbf{X} to minimize $(\mathbf{X}^T \mathbf{X})^{-1}$

But that is a matrix, so we need to reduce it to a scalar
A-optimal (average) design minimizestrace $(X^TX)^{-1}$
log det $(X^TX)^{-1}$
E-optimal (extreme) design minimizesDouble to the standard design minimizesIn the standard design design minimizesDouble to the standard design minimizesIn the standard design design

Alphabet soup of other criteria (C-, G-, L-, V-, etc.)

A-Optimal Design

- A-optimal design minimizes the trace of (X^TX)⁻¹
 - Minimizing trace (sum of diagonal elements) essentially chooses maximally independent columns
 - Chooses points near the border of the dataset
 - Trace of a matrix is the sum of its eigenvalues

Example: mixture of four Gaussians (a) Data set

(b) A-optimal design

A-Optimal Design

• A-optimal design minimizes the trace of $(X^T X)^{-1}$

Example: 20 candidate data points, minimal ellipsoid that contains all points

[Boyd & Vandenberghe, 2004]

D-Optimal design

• **D-optimal** design minimizes the determinant of $(X^T X)^{-1}$

- Determinant of a matrix is the product of the eigenvalues
- Chooses the confidence ellipsoid with minimum volume ("most powerful" hypothesis test in some sense)
- Minimizes entropy of the estimated parameters
- Most commonly used optimal design

[Boyd & Vandenberghe, 2004]

E-Optimal design

- *E-optimal* design minimizes largest eigenvalue of $(X^T X)^{-1}$
- Minimizes the diameter of the confidence ellipsoid

Practicalities

- Sometimes you can generate an *x* arbitrarily
- ♦ More often you need to select from a set of given x's
 - This can be an expensive search!

Experimental Design

- ♦ Active learning
 - Uncertainty sampling
 - Query by committee
 - Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
 - Non-linear optimal experimental design

Optimal design in non-linear models

- A given non-linear model $y = g(x, \theta)$
- is described by a Taylor expansion around the current estimate
 - $a_j(x, \hat{\theta}) = \partial g(x, \theta) / \partial \theta_j$, evaluated at $\hat{\theta}$ $Y_i = g(x, \hat{\theta}) + (\theta_1 - \hat{\theta}_1) a_1(x, \hat{\theta}) + ... + (\theta_k - \hat{\theta}_k) a_k(x, \hat{\theta})$
- Now just keep only the linear term
 - so the design is the same as before
- Yields a locally optimal design, optimal for the particular value of θ

[Atkinson, 1996]

Optimal design in non-linear models

- Problem: parameter value θ, used to choose experiments F, is unknown
- Three general techniques to address this problem
- **1)** Sequential experimental design: iterate between choosing experiment *x* and updating parameter estimates θ
- **2)** Bayesian experimental design: put a prior distribution on parameter θ , choose a best data **x**
- 3) Maximin experimental design: assume worst case scenario for parameter θ , choose a best data **x**

Response Surface Methods

- Estimate effects of local changes to the interventions (queries)
 - In particular, estimate how to maximize the response
- Applications:
 - Find optimal conditions for growing cell cultures
 - Develop robust process for chemical manufacturing
- Procedure for maximizing response
 - Given a set of datapoints, interpolate a local surface (This local surface is called the "response surface")
 - Typically use a quadratic polynomial to obtain a Hessian
 - Hill-climb or take Newton step on the response surface to find next x
 - Use next *x* to interpolate subsequent response surface

Response Surface Modeling

- Goal: Approximate the function f(c) = score(minimize(c))
- 1. Fit a smoothed *response surface* to the data points
- 2. Minimize response surface to find new candidate
- 3. Use method to find nearby local minimum of score function
- 4. Add candidate to data points
- 5. Re-fit surface, repeat

[Blum, unpublished]

Summary

•	Active learning (sequential)	Mu	Iltiple models
	 Query by committee 	Predi	ctive distribution on points
	 Uncertainty sampling Information-based loss functions 	Maximi	ze info gain
•	Optimal experimental design	Minimize trac	ce of $(X^T X)^{-1}$
	 A-optimal design 	Minimize det	of $(X^T X)^{-1}$
	 D-optimal design 	Minimize larg	est eigenvalue of $(X^T X)^{-1}$
	 E-optimal design 		Multiple-shot experiments;
•	Non-linear optimal experimental	design	Little known of parameters
	Sequential experimental design	Single-shot	experiment;
	Bayesian experimental design		
•	Response surface methods	Sequential e	experiments for optimization