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Strategies for choosing which points to label
Active learning: sequential, ad hoc
Experimental design: simultaneous, principled



Motivation

< Labeling data is often expensive
o Unlabeled data is often cheap

< Not all labels are equally useful
¢ We want to collect the “best” data at minimal cost

What observations should one label?



Toy examples

Assume you are learning y = ax+b for x on [-1,1].

You can pick two x’s to get y’s for.

What two values would you pick?
A) 1/3 1/3

< : Install the app from Make
pollev.com/app

Somethlng else -
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Toy examples

Assume you are learning y = f(x) for x a scalar
You are learning an SVM classifier on [-1.1].

You can pick 4 x’s to get y's for.

What strategy would you use to pick x’s?

A) Pick -1, -1/3, 1/3, 1

B) Pick -1, 1, see what the answer is, then pick next x

C) Pick -1/3, 1/3, see what the answer is, then pick next x
D) Something else — -~

Slide Show mode




Toy Example: 1D classifier

0 o 00 01 1 1 1 1

Unlabeled data: labels are all 0 then all 1 (left to right)
Classifier (threshold function):  h,(x) = 7 if x > w (0 otherwise)

Goal: find transition between 0 and 1 labels in minimum steps

Naive method: choose points to label at random on line
* Requires O(n) training data to find underlying classifier

Better method: binary search for transition between 0 and 1
* Requires O(log n) training data to find underlying classifier
« Exponential reduction in training data size!



Example: collaborative filtering

 Users usually rate only a few movies
* ratings are“expensive”

» Which movies do you show users to best extrapolate
movie preferences?

[Yu et al. 2006]



Example: collaborative filtering

¢ Baseline algorithms:

e Random: m movies randomly

o Most Popular Movies: m most frequently rated movies
¢ Most popular movies is not better than random design!

¢ Popular movies rated highly by all users; do not
discriminate tastes

[Yu et al. 2006]



Active Learning

¢ Active learning
e Uncertainty sampling
e Query by committee
e Information-based loss functions



Active Learning

& Given existing knowledge (X,y), choose where to collect
more labels

o Assume access to cheap unlabeled points
o Make a query to obtain expensive label

o Want to find labels that are “informative”
e Output: Classifier / predictor

& Similar to “active learning” in classrooms

o Students ask questions, receive a response, and ask more
questions

o Contrast: passive learning: student just listens to lecturer



Active Learning Setup
¢ Active learner picks which data point x to query
¢ Receive label (“response”) y from an oracle
¢ Update parameters w of the model
¢ Repeat

¢ Query selected to minimize some loss function (“risk”)



Active Learning

# Heuristic methods for reducing risk:
e Select “most uncertain” data point
e Select “most informative” data point



Uncertainty Sampling

¢ Query the item (x) that the current classifier is
most uncertain about

¢ Needs measure of uncertainty

¢ Examples:
o Entropy
o Least confident predicted label
o Euclidean distance (e.g. point closest to margin in SVM)

When might this fail?



Example: Gene expression and
Cancer classification

¢ Data: Cancerous lung tissue samples

e “Cheap” unlabeled data
= gene expression profiles from Affymetrix microarray

e Labeled data:;

= 0-1label for adenocarcinoma or malignant pleural mesothelioma

¢ Method:
o Linear SVM
o Measure of uncertainty: distance to SVM hyperplane
Liu 2004



Example: Gene expression and
Cancer classification

¢ Active learning takes 31 points to achieve same
accuracy as passive learning with 174

# of labeled examples
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Query by Committee

¢ Which unlabeled point should you choose?

. - . a) Red arrow point
Eal=— . . b) Green arrow point



Query by Committee

¢ Yellow = valid hypotheses




Query by Committee

< Point on max-margin hyperplane does not reduce
the number of valid hypotheses by much

<




Query by Committee

¢ Queries an example based on the degree of
disagreement between committee of classifiers

<




Query by Committee

< Start with prior distribution over classifiers/hypotheses
¢ Sample a set of classifiers from distribution

¢ Natural for ensemble methods
o Random forests, Bagged classifiers, etc.

¢ Measures of disagreement
o Entropy of predicted responses
o KL-divergence of predictive distributions



Query by Committee Application

¢ Use Naive Bayes model for text classification (20 Newsgroups

dataset
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Information-based Loss Function

¢ Above methods looked at uncertainty at a single point
o Does not look at expected effect of adding the point on the model
¢ Want to quantify information gained
o Maximize KL divergence between posterior and prior
K L(P||7w) = # of bits gained about model
o Maximize reduction in model entropy between posterior and prior
(reduce number of bits required to describe distribution)
¢ All of these can be extended to optimal design algorithms

¢ Must decide how to handle uncertainty about query response,
model parameters
[MacKay, 1992]



Kullback Leibler divergence

¢ P =true distribution:;
¢ Q@ = alternative distribution that is used to encode data

¢ KL divergence is the expected extra message length per datum
that must be transmitted using Q

KL(P| Q) = 2; P(x) log (P(x)/Q(x))

- - 2; 'D(X/) /Og Q(XI) t 2; P(XI) /Og P(X/)
=HFQ) - H(P)
= Cross-entropy - entropy

¢ Measures how different the two distributions are



KL divergence as info gain

¢ The KL divergence of the posteriors measures
the information gain expected from query (x):

KL(p(@] x, x°) |l p(0] X))

¢ Goal: choose a query that maximizes the KL
divergence between the updated posterior
probability and the current posterior probability

o This represents the largest expected information gain



Active learning warning

¢ Choice of data is only as good as the model itself
¢ Assume a linear model, then two data points are sufficient
¢ What happens when data are not linear?

x
4 _x - -




Active Learning = Sequential
Experimental Design

¢ Optimal experimental design
e A-optimal design
e D-optimal design
e E-optimal design



Optimal Experimental Design

¢ Active learning heuristics give empirically good
performance but sometimes fail

& Optimal experimental design gives
o theoretical criteria for choosing a set of points to label
for a specific set of assumptions and objectives
It fails, too, if the assumptions aren't met.



Optimal Experimental Design

¢ Given a model with parameters w,

o What queries are maximally informative
.e. will yield the best estimate of w

¢ “Best” minimizes variance of estimate of w
¢ Linear models
e Optimal design does not depend on w!
¢ Non-linear models
e Depends on w; often use Taylor expansion to linear model



Goal: Minimize variance of w
If y=x"8+¢ then w=(X"X)"" X"y
w ~ N(B, (X" X)) e~ N(0, &%)

We want to minimize the variance of our parameter estimate w, so
pick training data X to minimize (X'X) "

But that is a matrix, so we need to reduce it to a scalar

A-optimal (average) design minimizes trace(X"X)1
D-optimal (determinant) design minimizes log det(X"X)-!
E-optimal (extreme) design minimizes max eigenvalue of (X7X)!

Alphabet soup of other criteria (C-, G-, L-, V-, etc.)



A-Optimal Design

o A-optimal design minimizes the trace of (X"X)-'

o Minimizing trace (sum of diagonal elements) essentially chooses

maximally independent columns

o Chooses points near the border of the dataset

o Trace of a matrix is the sum of its eigenvalues
Example: mixture of four Gaussiaffli®

, - e
(a) Data set (b) A-optimal design

[Yu et al., 2006]



A-Optimal Design

+ A-optimal design minimizes the trace of (X"X)!

Example: 20 candidate data points, minimal ellipsoid that
contains all points
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D-Optimal design

& D-optimal design minimizes the determinant of (X7X)-!
o Determinant of a matrix is the product of the eigenvalues
o Chooses the confidence ellipsoid with minimum volume
(“most powerful” hypothesis test in some sense)
o Minimizes entropy of the estimated parameters

¢ Most commonly used optimal design

——— = [Boyd & Vandenberghe, 2004]



E-Optimal design

o E-optimal design minimizes largest eigenvalue of (X7X)!

¢ Minimizes the diameter of the confidence ellipsoid
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Practicalities

¢ Sometimes you can generate an x arbitrarily

¢ More often you need to select from a set of given x’s
e This can be an expensive search!



Experimental Design

o Non-linear optimal experimental design



Optimal design in non-linear models

# A given non-linear model y = g(x, 0)
¢ is described by a Taylor expansion around the current estimate

o aj(x Z ) ag(x 9)/89, evaluated at ¢ )

¢ Now just keep only the linear term
e 50 the design is the same as before

¢ Yields a locally optimal design, optimal for the particular value of 6

[Atkinson, 1996]



Optimal design in non-linear models

¢ Problem: parameter value 6, used to choose experiments F, is
unknown

¢ Three general techniques to address this problem

1) Sequential experimental design: iterate between choosing
experiment x and updating parameter estimates 0

2) Bayesian experimental design: put a prior distribution on parameter
0, choose a best data x

3) Maximin experimental design: assume worst case scenario for
parameter 0, choose a best data x



Response Surface Methods

¢ Estimate effects of local changes to the interventions (queries)
e In particular, estimate how to maximize the response
¢ Applications:
e Find optimal conditions for growing cell cultures
o Develop robust process for chemical manufacturing
¢ Procedure for maximizing response
o Given a set of datapoints, interpolate a local surface
(This local surface is called the “response surface”)
o Typically use a quadratic polynomial to obtain a Hessian
o Hill-climb or take Newton step on the response surface to find next x
o Use next x to interpolate subsequent response surface



Response Surface Modeling

Goal: Approximate the function 00
f(c) = score(minimize(c)) i N
£ .100 -
Q
1. Fit a smoothed response surface to the % -110
data points E 120
2. Minimize response surface to find new
candidate i

3. Use method to find nearby local minimum ~ -140
of score function

4. Add candidate to data points

5. Re-fit surface, repeat

[Blum, unpublished]



Summary

Active learning (sequential Multiple models ]
— Query by committee / Predictive distribution on points ]
— Uncertainty sampling — :
Maximize info gain
— Information-based loss functionsg\ ° ]

Optimal experimental design  (WMinimize frace of (X"XJ" )
— A_Optima| design Minimize det of (XTX)'1

— D-optimal design — Minimize largest eigenvalue of (X7X)-

- E-optimal design Multiple-shot experiments;
Non-linear optimal experimental design \.Lite known of parameters

*  Sequential experimental design —Single-shot experiment;
_—~Some idea of parameter distribution

 Bayesian experimental design

Response surface methods— Sequential experiments for optimization



