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Strategies for choosing which points to label
Active learning: sequential, ad hoc 
Experimental design: simultaneous, principled 



Motivation
u Labeling data is often expensive

l Unlabeled data is often cheap
u Not all labels are equally useful
u We want to collect the “best” data at minimal cost 

What observations should one label?



Toy examples
Assume you are learning y = ax+b for x on [-1,1]. 

You can pick two x’s to get y’s for. 

What two values would you pick?
A)  -1/3, 1/3
B) -1, 1
C)  0, 1
D) Something else



Toy examples
Assume you are learning y = f(x) for x a scalar
You are learning an SVM classifier on [-1.1].    
You can pick 4 x’s to get y’s for.
What strategy would you use to pick x’s? 
A) Pick -1, -1/3, 1/3, 1
B) Pick -1, 1, see what the answer is, then pick next x
C) Pick -1/3, 1/3, see what the answer is, then pick next x
D) Something else



Toy Example: 1D classifier

x x x x x x xxxx

hw(x) = 1 if x > w (0 otherwise)Classifier (threshold function):

Naïve method: choose points to label at random on line
• Requires O(n) training data to find underlying classifier

Better method: binary search for transition between 0 and 1
• Requires O(log n) training data to find underlying classifier
• Exponential reduction in training data size!

Goal: find transition between 0 and 1 labels in minimum steps

Unlabeled data: labels are all 0 then all 1 (left to right)

0 0 0 0 0 1 1 1 1 1



Example: collaborative filtering

[Yu et al. 2006]

• Users usually rate only a few movies
• ratings are“expensive”

• Which movies do you show users to best extrapolate 
movie preferences?



Example: collaborative filtering
u Baseline algorithms:

l Random: m movies randomly
l Most Popular Movies: m most frequently rated movies

u Most popular movies is not better than random design!
u Popular movies rated highly by all users; do not 

discriminate tastes

[Yu et al. 2006]



Active Learning
u Active learning

l Uncertainty sampling
l Query by committee
l Information-based loss functions

u Optimal experimental design
l A-optimal design
l D-optimal design
l E-optimal design
l Non-linear optimal experimental design



Active Learning
u Given existing knowledge (X,y), choose where to collect 

more labels
l Assume access to cheap unlabeled points
l Make a query to obtain expensive label
l Want to find labels that are “informative”
l Output: Classifier / predictor

u Similar to “active learning” in classrooms
l Students ask questions, receive a response, and ask more 

questions
l Contrast: passive learning: student just listens to lecturer



Active Learning Setup 
u Active learner picks which data point x to query
u Receive label (“response”) y from an oracle
u Update parameters w of the model
u Repeat

u Query selected to minimize some loss function (“risk”)



Active Learning
u Heuristic methods for reducing risk:

l Select “most uncertain” data point 
l Select “most informative” data point 



Uncertainty Sampling
u Query the item (x) that the current classifier is 

most uncertain about
u Needs measure of uncertainty
u Examples:

l Entropy
l Least confident predicted label
l Euclidean distance (e.g. point closest to margin in SVM)

When might this fail?



Example: Gene expression and 
Cancer classification

u Data: Cancerous lung tissue samples
l “Cheap” unlabeled data

n gene expression profiles from Affymetrix microarray
l Labeled data: 

n 0-1 label for adenocarcinoma or malignant pleural mesothelioma

u Method:
l Linear SVM
l Measure of uncertainty: distance to SVM hyperplane

Liu 2004



Example: Gene expression and 
Cancer classification

u Active learning takes 31 points to achieve same 
accuracy as passive learning with 174

Liu 2004



Query by Committee
u Which unlabeled point should you choose?

a) Red arrow point
b) Green arrow point



Query by Committee
u Yellow = valid hypotheses



Query by Committee
u Point on max-margin hyperplane does not reduce 

the number of valid hypotheses by much



Query by Committee
u Queries an example based on the degree of 

disagreement between committee of classifiers



Query by Committee
u Start with prior distribution over classifiers/hypotheses
u Sample a set of classifiers from distribution
u Natural for ensemble methods

l Random forests, Bagged classifiers, etc.
u Measures of disagreement

l Entropy of predicted responses
l KL-divergence of predictive distributions



Query by Committee Application
u Use Naïve Bayes model for text classification (20 Newsgroups 

dataset)

[McCallum & 
Nigam, 1998]



Information-based Loss Function
u Above methods looked at uncertainty at a single point

l Does not look at expected effect of adding the point on the model
u Want to quantify information gained

l Maximize KL divergence between posterior and prior

l Maximize reduction in model entropy between posterior and prior 
(reduce number of bits required to describe distribution)

u All of these can be extended to optimal design algorithms
u Must decide how to handle uncertainty about query response, 

model parameters
[MacKay, 1992]



Kullback Leibler divergence
u P = true distribution; 
u Q = alternative distribution that is used to encode data 
u KL divergence is the expected extra message length per datum 

that must be transmitted using Q

u Measures how different the two distributions are

KL(P || Q) = Si P(xi) log (P(xi)/Q(xi))

= - Si P(xi) log Q(xi) + Si P(xi) log P(xi)
= H(P,Q)          - H(P)   
= Cross-entropy - entropy



KL divergence as info gain
u The KL divergence of the posteriors measures 

the information gain expected from query (x’):

u Goal: choose a query that maximizes the KL 
divergence between the updated posterior 
probability and the current posterior probability 
l This represents the largest expected information gain

KL( p(q | x, x’) || p(q | x))



Active learning warning
u Choice of data is only as good as the model itself
u Assume a linear model, then two data points are sufficient
u What happens when data are not linear?



Active Learning = Sequential 
Experimental Design

u Active learning
l Uncertainty sampling
l Query by committee
l Information-based loss functions

u Optimal experimental design
l A-optimal design
l D-optimal design
l E-optimal design
l Non-linear optimal experimental design



Optimal Experimental Design
u Active learning heuristics give empirically good 

performance but sometimes fail

u Optimal experimental design gives 
l theoretical criteria for choosing a set of points to label 

for a specific set of assumptions and objectives
It fails, too, if the assumptions aren’t met.



Optimal Experimental Design
u Given a model with parameters w, 

l What queries are maximally informative
i.e. will yield the best estimate of w

u “Best” minimizes variance of estimate of w
u Linear models

l Optimal design does not depend on w !
u Non-linear models

l Depends on w; often use Taylor expansion to linear model 



Goal: Minimize variance of w
If y = xTb + e             then w = (XTX)-1 XTy

w ~ N(b, s2(XTX)-1) e ~ N(0, s2)

We want to minimize the variance of our parameter estimate w, so 
pick training data X to minimize (XTX)-1 

But that is a matrix, so we need to reduce it to a scalar
A-optimal (average) design minimizes  trace(XTX)-1 

D-optimal (determinant) design minimizes     log det(XTX)-1 

E-optimal (extreme) design minimizes max eigenvalue of (XTX)-1

Alphabet soup of other criteria (C-, G-, L-, V-, etc.)



A-Optimal Design
u A-optimal design minimizes the trace of (XTX)-1 

l Minimizing trace (sum of diagonal elements) essentially chooses 
maximally independent columns

l Chooses points near the border of the dataset
l Trace of a matrix is the sum of its eigenvalues

Example: mixture of four Gaussians

[Yu et al., 2006]



A-Optimal Design
• A-optimal design minimizes the trace of (XTX)-1 

Example: 20 candidate data points, minimal ellipsoid that 
contains all points

[Boyd & Vandenberghe, 2004]



D-Optimal design
u D-optimal design minimizes the determinant of (XTX)-1

l Determinant of a matrix is the product of the eigenvalues
l Chooses the confidence ellipsoid with minimum volume

(“most powerful” hypothesis test in some sense)
l Minimizes entropy of the estimated parameters 

u Most commonly used optimal design

[Boyd & Vandenberghe, 2004]



E-Optimal design
u E-optimal design minimizes largest eigenvalue of (XTX)-1

u Minimizes the diameter of the confidence ellipsoid

[Boyd & Vandenberghe, 2004]



Practicalities
u Sometimes you can generate an x arbitrarily
u More often you need to select from a set of given x’s

l This can be an expensive search!



Experimental Design
u Active learning

l Uncertainty sampling
l Query by committee
l Information-based loss functions

u Optimal experimental design
l A-optimal design
l D-optimal design
l E-optimal design
l Non-linear optimal experimental design



Optimal design in non-linear models
u A given non-linear model y = g(x, q)
u is described by a Taylor expansion around the current estimate 

l aj(x,   ) = ∂g(x,q)/∂qj, evaluated at

u Now just keep only the linear term
l so the design is the same as before

u Yields a locally optimal design, optimal for the particular value of q

[Atkinson, 1996]



Optimal design in non-linear models
u Problem: parameter value q, used to choose experiments F, is 

unknown
u Three general techniques to address this problem
1) Sequential experimental design: iterate between choosing 
experiment x and updating parameter estimates q
2) Bayesian experimental design: put a prior distribution on parameter 
q, choose a best data x
3) Maximin experimental design: assume worst case scenario for 
parameter q, choose a best data x



Response Surface Methods
u Estimate effects of local changes to the interventions (queries)

l In particular, estimate how to maximize the response
u Applications:

l Find optimal conditions for growing cell cultures
l Develop robust process for chemical manufacturing

u Procedure for maximizing response
l Given a set of datapoints, interpolate a local surface

(This local surface is called the “response surface”)
l Typically use a quadratic polynomial to obtain a Hessian
l Hill-climb or take Newton step on the response surface to find next x
l Use next x to interpolate subsequent response surface



Response Surface Modeling
Goal: Approximate the function

f(c) = score(minimize(c))

1. Fit a smoothed response surface to the 
data points

2. Minimize response surface to find new                                          
candidate

3. Use method to find nearby local minimum       
of score function

4. Add candidate to data points
5. Re-fit surface, repeat

[Blum, unpublished]



Summary                       
• Active learning (sequential)

– Query by committee
– Uncertainty sampling
– Information-based loss functions

• Optimal experimental design
– A-optimal design
– D-optimal design
– E-optimal design

• Non-linear optimal experimental design
• Sequential experimental design
• Bayesian experimental design

• Response surface methods

Single-shot experiment;
Some idea of parameter distribution

Multiple-shot experiments;
Little known of parameters

Multiple models

Predictive distribution on points

Maximize info gain

Minimize trace of (XTX)-1 

Minimize det of (XTX)-1 

Minimize largest eigenvalue of (XTX)-1 

Sequential experiments for optimization


