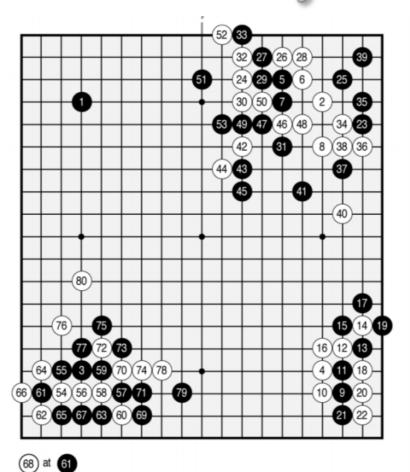
AlphaGo

Jonathan Hui

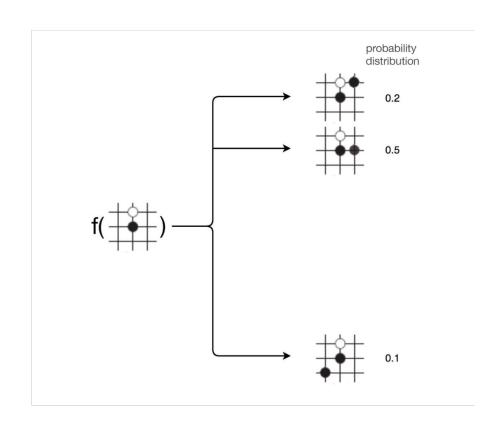
https://medium.com/@jonathan_hui/alphago-how-it-works-technically-26ddcc085319

Go – surround territory on 19x19 board



Learn policy

- ◆ a = f(s)
- \bullet a = where to play (19*19)
- ◆ s = description of board



state ~ 19*19*48

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Train "SL policy network"

- ◆ 13 layers of convolutional filters and rectifiers
 - softmax classifier
- ◆ Train using moves for 30 million board positions
- ◆ 50 GPUs for 3 weeks

Approximate using rollout policy net

- ◆ SL policy network (55.7% accuracy) 3 ms
- Rollout policy network (24.2% accuracy) 2 μs
 - Also trained on human expert positions

RL policy network

- ◆ Initialize with SL policy network
- ◆ Train using self-play with older network
- ◆ Let z_t =1 if we win game or -1 if we lose

$$\Delta
ho \propto rac{\partial {
m log} \ p_{
ho}(a_t | s_t)}{\partial
ho} z_t$$
 policy gradient RL

$$\Delta\sigma \propto \frac{\partial \log p_{\sigma}(a\,|\,s)}{\partial \sigma}$$

DL backprogagation

Value network

- ◆ Estimate value of board state under the policy followed by the policy network
- ◆ Input: one board from each self-play game
- ◆ Output: z (win/loss for that game)
- again, 50 GPUs for one week.

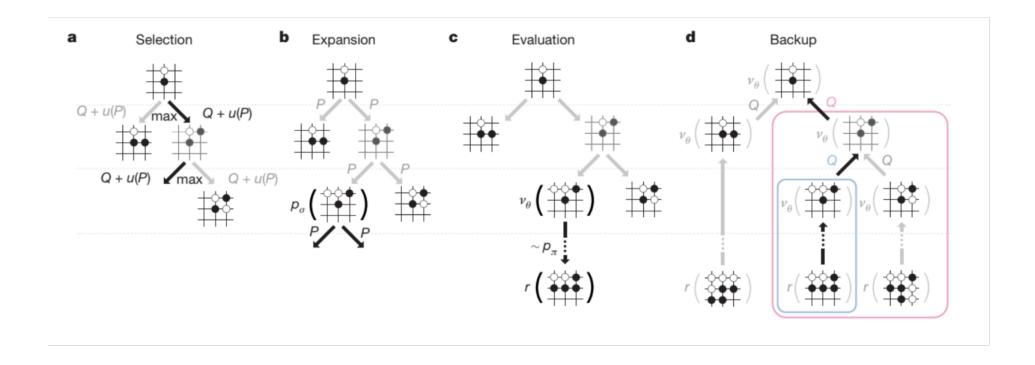
Monte Carlo Tree Search

- **◆** Need to trade off exploration and exploitation
 - But can't afford to do a full search

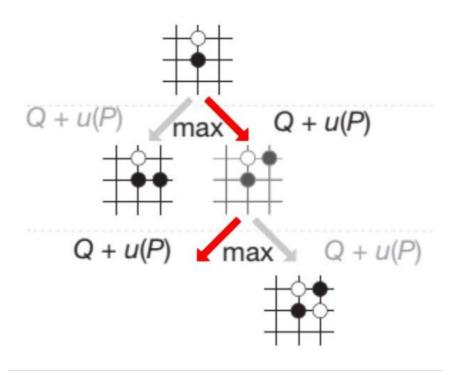
◆ Use

- predictions from the policy and value networks
- how many times we have picked the move
- simulated game results with wins.

Monte Carlo Tree Search



Selection



 $p_{\sigma}(a|s)$ - From the policy network: how good to take action a.

 $v_{\theta}(s_L)$ - From the value network: how good to be in positions s_L .

N(s, a) - How many times have we select action a so far.

 z_L - the previous simulated game result.

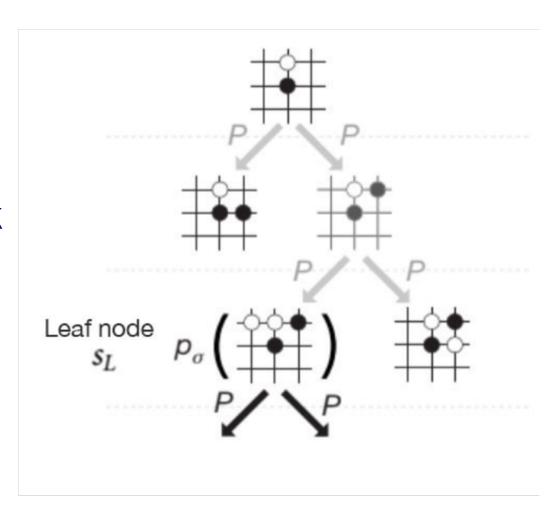
$$a_t = \operatorname{argmax}(Q(s_t, a) + u(s_t, a))$$

 $a \quad \text{exploration exploitation}$

$$u(s,a) \propto rac{P(s,a)}{1+N(s,a)}$$
 $P(s,a) = p_{\sigma}(a|s)$ SL policy net
 $N(s,a) = \sum_{i=1}^n 1(s,a,i)$ # times a picked
 $V(s_L) = (1-\lambda)v_{\theta}(s_L) + \lambda z_L$ value previous game result $Q(s,a) = rac{1}{N(s,a)} \sum_{i=1}^{net} 1(s,a,i) V(s_L^i)$

Expansion

- ◆ **Q** from RL value net
 - more accurate
 - use for exploitation
- ◆ P from SL policy network
 - more diverse
 - use for exploration (u)



Evaluation

- ◆ Simulate the rest of the game using Monte Carlo Rollout starting from the leaf node
- Sample moves using the rollout policy.
 - Use the fast (but inaccurate) rollout net
 - 1500x faster
- ◆ Predicts a win or a loss z_L

Backup

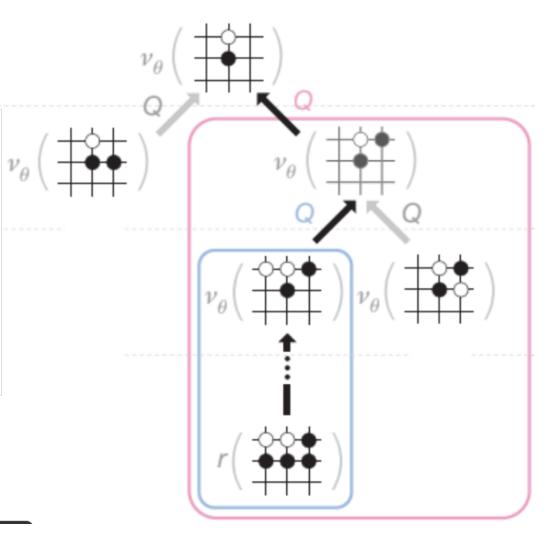
◆ Update Q with

$$N(s,a) = \sum_{i=1}^{n} 1(s,a,i)$$

$$V(s_L) = (1-\lambda)v_{\theta}(s_L) + \lambda z_L$$

$$Q(s,a) = \frac{1}{N(s,a)} \sum_{i=1}^{n} 1(s,a,i)V(s_L^i)$$

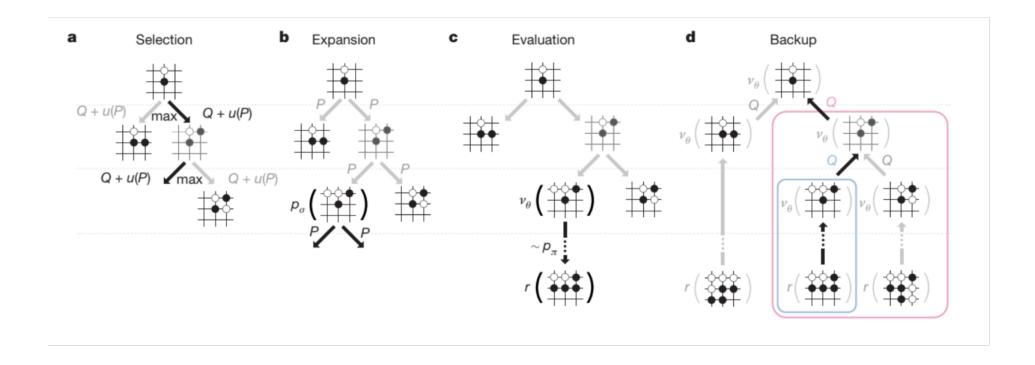
Backup



Picking the next move

- ◆ Could use Q(s,a) but don't
- ◆ Use the move that was most often picked for the current board position
 - Leads to increasing exploitation over time

Monte Carlo Tree Search



AlphaGo take-aways

- ◆ Boot-strap
 - Start with policy learned from human play
- **♦** Self-play
- Speed matters
 - Rollout network
 - Monte Carlo search
- ◆ It still helps to have fast computers
 - 100 GPU weeks