° LEE SEDOL
00:01:00

L 2 J
@) O
® @
O, A8

.(’\\,.

W)

AlphaGo

Google DeepMind

Jonathan Hui

https://medium.com/@jonathan_hui/alphago-how-it-works-technically-26ddcc085319

rritory on 19x19 board

Go - surround te

Learn policy

¢ a=f(s) L
& a = where to play (19*19) ﬁ

& s = description of board

state ~ 19719748

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness I Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color

- -

Whether current player is black

Train “SL policy network”

+ 13 layers of convolutional filters and rectifiers
o softmax classifier

Train using moves for 30 million board positions
¢ 50 GPUs for 3 weeks

Approximate using rollout policy net

& SL policy network (55.7% accuracy) 3 ms

Rollout policy network (24.2% accuracy) 2 us
o Also trained on human expert positions

RL policy network

¢ Initialize with SL policy network
Train using self-play with older network
& Let z=1if we win game or -1 if we lose

Jlo a;|s dlo als
- dlog p,(a:| t)z, . T g.Pn('s)
dp do

policy gradient RL DL backprogagation

Value network

¢ Estimate value of board state under the policy
followed by the policy network

Input: one board from each self-play game
¢ Output: z (win/loss for that game)
& again, 50 GPUs for one week.

Monte Carlo Tree Search

¢ Need to trade off exploration and exploitation
e But can't afford to do a full search

¢ Use
o predictions from the policy and value networks
e how many times we have picked the move
o simulated game results with wins.

Monte Carlo Tree Search

Sel b Expansion Evaluation d Backup
niﬂi\ Q+uP) H , H jﬁ\
R S I - S
TR LEn w e B | B
A
) |

Selection

$

Q T L“P’

A

_+’.‘

I
max

e

-

Q + u(P)

r—

!
Q + u(P) /n

ax

Q
Pes
iadh

+ L;‘/Dl

ps(als) - From the policy network: how good to take action a.

vg(sz) - From the value network: how good to be in positions sz .

N(s, a) - How many times have we select action a so far.
7z, - the previous simulated game result.

a,=argmax(Q(s,a) + u(s,a))

a exploration exploitation
P(s,a
u(s,a) (5:4)
1+ N(s,a)

P(s,a)=p (a|s) SL policy net

N(s,a)=)_ 1(s,a,i) #times a picked
i=1
V(SL) - (1 p— /\)VOPL) -+ AZL _

value previous
game result

Q)= ——"S 1D V(sy)

N(s,a) =

Expansion

¢ Q from RL value net
e Mmore accurate
e Uuse for exploitation
¢ P from SL policy network

e more diverse
e use for exploration (u)

Leaf node

%

Evaluation

& Simulate the rest of the game using Monte Carlo
Rollout starting from the leaf node

¢ Sample moves using the rollout policy.

o Use the fast (but inaccurate) rollout net
= 1500x faster

& Predicts awin or a loss z;

Backup ‘

¢ Update Q with

N(s,a) = Z 1(s, a, i) _+,

V(SL) = (l — /\)V()(SL) -+ /\ZL

L S s ai)V(s)
=]

Qs.a)= N(s,a) :

Backup

T
2

Picking the next move

¢ Could use Q(s,a) but don't

¢ Use the move that was most often picked for
the current board position

o Leads to increasing exploitation over time

Monte Carlo Tree Search

Sel b Expansion Evaluation d Backup
niﬂi\ Q+uP) H , H jﬁ\
R S I - S
TR LEn w e B | B
A
) |

AlphaGo take-aways

¢ Boot-strap
o Start with policy learned from human play

< Self-play

¢ Speed matters
¢ Rollout network
e Monte Carlo search

¢ It still helps to have fast computers
o 100 GPU weeks

