Deep Q-Learning,
AlphaGo and AlphaZero

Lyle Ungar

Deep RL architecture ~ With slides from Eric Eaton

AlphaGo
AlphaZero

Remember Q-Learning

Q(s,a) « Q(s,a) + « (R +yQ(s',m(s")) — Q(s, a))

el
Converges when this is zero

where

Q (S', n(s')) =max, Q(s’,a’

Deep Q- Learnmg (DQN)

ooooooooooooooooooo
- -

Input: s ol @ /e
Output: Q(s,a) -DD .) .
. o] [4: o
Learning: | ol @\ e
gradient descent with the ol]\

following loss function:

((R(S, a,s’) + Y max Q(s', a’)) — Q(s, a))2

The policy, 7(a), is then given by
maximizing the predicted Q-value

4
ANRAARAAN ‘;: 3
+A+ =000+ 1+ 2 € v Ed 5 Q
©) (@] (© [©] (€] €] (¢ (¢] |3 2

Separate Q- and Target Networks

Issue: Instability (e.g., rapid changes) in the Q-function can cause it to
diverge

Idea: use two networks to provide stability
¢ The Q-network is updated regularly

¢ The target network is an older version of the Q-network, updated
occasionally

((R(s, a,s’) + 7y max Q(s', a’)) — Q(s, a))2

-

computed via computed via
target network Q-network

Experience Replay

¢ Maintain buffer of previous experiences

¢ Perform Q-updates based on a sample from
the replay buffer

¢ Advantages:
o Breaks correlations between consecutive samples

o Each experience step may influence multiple
gradient updates

FIFO or Priority Queue

Deep Q-Learning (DQN) Algorithm

Initialize replay memory D
Initialize Q-function weights 6
for episode = 1... M, do
Initialize state s;
fort=1...T, do
0 { random action W?th probab%l%ty € - reedy
max, Q*(s¢, a;0) with probability 1 — €
Execute action a;, yielding reward r; and state sy
Store (s¢, a¢, T4, S¢r1) in D
St < St41
Sample random minibatch of transitions {(s;,a;,7;,5;41)}j—; from D

T for terminal state s;11
Yi { r; +ymaxy @ (sj4+1,a’;60) for non-terminal state s;41
Perform a gradient descent step on (y; — Q(s;,a;;0))?
end for
end for

Based on https://arxiv.org/pdf/1312.5602v1.pdf

https://arxiv.org/pdf/1312.5602v1.pdf

DQN on Atari Games

Image Sources:
ttps://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4¢1b3fb 7756
ttps://deepmind.com/blog/going-beyond-average-reinforcement-learning/
ttps:/Tjaromiru.com/2016/11/07/lets-make-a-dan-double-learning-and-prioritized-experience-replay/

=0

)

=0

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

00:01:00

[JoY J

Alpﬁ/aGo

https://medium.com/@)jonathan_hui/alphago-how-it-works-technically-26ddcc085319 2016

AlphaGo

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network

: ‘Self Play " ‘Self Play ; @ @

3. Train value network with examples
from policy network self-play

1. Train a CNN to predict (supervised
learning) moves of human experts

2. Use as starting point for policy 4. Use Monte Carlo tree search to
gradient (self-play against older self) explore possible games

Image from DeepMind’s ICML 2016 tutorial on AlphaGo: https:/licml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

Go - surround territory on 19x19 board

Learn policy

¢ a= f(S) B Gitrbution
& a = where to play (19*19) ﬁ

& s = description of board

State ~19*19%48

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color

—_—

Whether current player is black

Train “SL policy network”

+ 13 layers of convolutional filters and rectifiers
e softmax classifier

¢ Train using moves for 30 million board positions
e From previous human go games

¢ 50 GPUs for 3 weeks

SL = “supervised learning”

Approximate using rollout policy net

& SL policy network (55.7% accuracy) 3 ms

& Rollout policy network (24.2% accuracy) 2 us
e Also trained on human expert positions

RL policy network

¢ Initialize with SL policy network
¢ Train using self-play with older network
& Let z=1 if it wins the game or -1 if it loses

o a;|s dlo als
Apox dlog p,(a:| t)z, R g.Pn('s)
dp do

policy gradient RL DL backprogagation

Value network

+ Estimate value of board state under the policy
followed by the policy network

& Input: one board from each self-play game
& Output: z (win/loss for that game)
& again, 50 GPUs for one week.

Monte Carlo Tree Search

¢ Need to trade off exploration and exploitation
e But can't afford to do a full search

¢ Use Monte Carlo tree search

Monte Carlo Tree Search

Sel b Expansion c Evaluation d Backup
j§0+u(m M , H H'\
1 o I 2 S o j#
e e W B
N
) e

Action selection a:=argmax(Q(s;,a) + u(s, a))

a exploitation exploration
" P(s,a
? u(s,a) o (5:4)
max Q +uP) 1+ N(s,a)
g ’JF l _#t P(s,a)=p. (a|s) SLpolicy net
| | n
Q + u(P) Aax 5 & 1h N(s,a)=)1(s,a,i) #times a picked
19 i=1
jh V(s))=(1-)\)v,)gs,_) + A\z;
value previous
po(als) - From the policy network: how good to tal.(e acti.o.n a. Q(i l S ga;ne reSUIt
Moty - How mny times e e et acton s+ N (s,a)

zz, - the previous simulated game result.

You don’t need to know thls'

Expansion

¢ Q from RL value net
e MoOre accurate
e use for exploitation

& P from SL policy network

e more diverse
e use for exploration (u)

Leaf node
SL

e o

. (14F)

N

You don’t need to know this!

_§

Evaluation

+ Simulate the rest of the game using Monte Carlo
Rollout starting from the leaf node

¢ Sample moves using the rollout policy.
o Use the fast (but inaccurate) rollout net
= 1500x faster

& Predicts a win or a loss z;

Backup ‘ —

¢ Update Q with result of MC

N(s,a)zi 1(s,a,i) __;‘

V(SL) = (l — /\)V()(SL) + /\ZL

1 o
NG.2) ,Z::l 1(s,a,i)V(s})

Q(s,a)=

You don’t need to know this!

Picking the next move

¢ Could use Q(s,a) -- but don’t

¢ Use the move that was most often picked for
the current board position
o Leads to decreasing exploration over time

You don’t need to know this!

Monte Carlo Tree Search

Selection b Expansion c Evaluation d Backup
E J— T l‘A / !

Q +uP) max

(LSS ST OB e

TN » |
(333) &) () (8
Pick action play it out see the game outcome use to update Q(s,a)

multiple times

Al

Training Requirements:

e CNN network: 30M human expert moves, 50
GPUs for 3 weeks

o Policy network: 10K minibatches of 128
games, 50 GPUs for 1 day

o Value network: 50M minibatches of 32
positions, 50 GPUs for 1 week (30M distinct
positions from separate self-play games)

Computational Requirements:

e Stand-alone version: 40 search threads, 48
CPUs, 8 GPUs

e Distributed version: 40 search threads, 1,202
CPUs, 176 GPUs

Image from https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

AlphaGo take-aways

¢ Bootstrap
e Initialize with policy learned from human play

& Self-play

¢ Speed matters
o Rollout network (fast, less accurate game play)
e Monte Carlo search

¢ It still needs fast computers
e > 100 GPU weeks

AlphaZero

¢ Single network
e instead of separate policy and value nets
o Self-play with a single, continually updated neural net
o No annotated features - just the raw board position

¢ Uses Monte Carlo Tree Search

+ Beat AlphaGo (100-0) after just 72 hours of training
e On 5,000 TPUs

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games- 2017
chess-shoai-and-ao

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Monte Carlo Tree Search (MCTS)

¢ In each state s,,, select a move, a; ~ w, either
proportionally (exploration) or greedily (exploitation)

¢ pick a move a, with
o low visit count (not previously frequently explored)
o high move probability (under the policy

e high value (averaged over the leaf states of MC plays that
selected a from s) according to the current neural net

¢ The MCTS returns an estimate z of v(s,,,) and a
probability distribution over moves, © = p(als,,,;)

AlphaZero loss function

NNet: (p,0) =/fo(s)
¢ Minimizes the error between the predicted outcome
(value function) v(s) and the actual game outcome z

& Maximizes the similarity of the policy vector p(s) to
the MCTS probabilities wt(s).

& L2 regularize the weights 6

[=(2— v)2 —nt'log p + cllo]®.

RL Summary

& Why is DeepMind losing $500 million/year?

StarCraft

< StarCraft-playing Al model consists of 18 agents,
each trained with 16 Google v3 TPUs for 14 days.

& Thus, at current prices ($8.00 / TPU hour), the
company spent $774,000 on this model

NTARLRAFT

