
Deep Q-Learning,
AlphaGo and AlphaZero

Lyle Ungar
With slides from Eric EatonDeep RL architecture

AlphaGo
AlphaZero

Remember Q-Learning
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 + 𝛾𝑄 𝑠′, 𝜋 𝑠′ − 𝑄 𝑠, 𝑎

where
𝑄 𝑠′, 𝜋 𝑠′ = maxa’ 𝑄 𝑠′, 𝑎′

Converges when this is zero

Deep Q-Learning (DQN)

● Input: s
● Output: Q(s,a)
● Learning:
● gradient descent with the
● following loss function:
⇣⇣

R(s, a, s0) + �max
a0

Q(s0, a0)
⌘
�Q(s, a)

⌘2

The policy, p(a), is then given by
maximizing the predicted Q-value

Separate Q- and Target Networks
Issue: Instability (e.g., rapid changes) in the Q-function can cause it to
diverge

Idea: use two networks to provide stability
u The Q-network is updated regularly
u The target network is an older version of the Q-network, updated

occasionally
⇣⇣

R(s, a, s0) + �max
a0

Q(s0, a0)
⌘
�Q(s, a)

⌘2

computed via
target network

computed via
Q-network

Experience Replay
u Maintain buffer of previous experiences

u Perform Q-updates based on a sample from
the replay buffer

u Advantages:
l Breaks correlations between consecutive samples
l Each experience step may influence multiple

gradient updates

...

Replay Buffer

FIFO or Priority Queue

hsj , aj , rj , sj+1i

hs1, a1, r1, s2i
hs2, a2, r2, s3i

Deep Q-Learning (DQN) Algorithm
Initialize replay memory D
Initialize Q-function weights ✓
for episode = 1 . . .M , do

Initialize state st
for t = 1 . . . T , do

at
⇢

random action with probability ✏
maxa Q⇤(st, a; ✓) with probability 1� ✏

Execute action at, yielding reward rt and state st+1

Store hst, at, rt, st+1i in D
st st+1

Sample random minibatch of transitions {hsj , aj , rj , sj+1i}Nj=1 from D

yj
⇢

rj for terminal state sj+1

rj + �maxa0 Q (sj+1, a0; ✓) for non-terminal state sj+1

Perform a gradient descent step on (yj �Q(sj , aj ; ✓))2

end for
end for

Based on https://arxiv.org/pdf/1312.5602v1.pdf

e-greedy

https://arxiv.org/pdf/1312.5602v1.pdf

DQN on Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

AlphaGo

https://medium.com/@jonathan_hui/alphago-how-it-works-technically-26ddcc085319 2016

AlphaGo

1. Train a CNN to predict (supervised
learning) moves of human experts

2. Use as starting point for policy
gradient (self-play against older self)

Image from DeepMind’s ICML 2016 tutorial on AlphaGo: https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

3. Train value network with examples
from policy network self-play

4. Use Monte Carlo tree search to
explore possible games

https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

Go – surround territory on 19x19 board

Learn policy
u a = f(s)
u a = where to play (19*19)
u s = description of board

State ~ 19*19*48

Train “SL policy network”
u 13 layers of convolutional filters and rectifiers

l softmax classifier
u Train using moves for 30 million board positions

l From previous human go games
u 50 GPUs for 3 weeks

SL = “supervised learning”

Approximate using rollout policy net
u SL policy network (55.7% accuracy) 3 ms
u Rollout policy network (24.2% accuracy) 2 µs

l Also trained on human expert positions

RL policy network
u Initialize with SL policy network
u Train using self-play with older network
u Let zt=1 if it wins the game or -1 if it loses

Value network
u Estimate value of board state under the policy

followed by the policy network
u Input: one board from each self-play game
u Output: z (win/loss for that game)
u again, 50 GPUs for one week.

Monte Carlo Tree Search
u Need to trade off exploration and exploitation

l But can’t afford to do a full search
u Use Monte Carlo tree search

Monte Carlo Tree Search

Action selection
explorationexploitation

SL policy net

times a picked

previous
game result

value
net

You don’t need to know this!

Expansion
u Q from RL value net

l more accurate
l use for exploitation

u P from SL policy network
l more diverse
l use for exploration (u)

You don’t need to know this!

Evaluation
u Simulate the rest of the game using Monte Carlo

Rollout starting from the leaf node
u Sample moves using the rollout policy.

l Use the fast (but inaccurate) rollout net
n 1500x faster

u Predicts a win or a loss zL

Backup
u Update Q with result of MC

You don’t need to know this!

Picking the next move
u Could use Q(s,a) -- but don’t
u Use the move that was most often picked for

the current board position
l Leads to decreasing exploration over time

You don’t need to know this!

Monte Carlo Tree Search

Pick action play it out see the game outcome use to update Q(s,a)
multiple times

AlphaGo
Training Requirements:

l CNN network: 30M human expert moves, 50
GPUs for 3 weeks

l Policy network: 10K minibatches of 128
games, 50 GPUs for 1 day

l Value network: 50M minibatches of 32
positions, 50 GPUs for 1 week (30M distinct
positions from separate self-play games)

Computational Requirements:
l Stand-alone version: 40 search threads, 48

CPUs, 8 GPUs
l Distributed version: 40 search threads, 1,202

CPUs, 176 GPUs

Image from https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

AlphaGo take-aways
u Bootstrap

l Initialize with policy learned from human play
u Self-play
u Speed matters

l Rollout network (fast, less accurate game play)
l Monte Carlo search

u It still needs fast computers
l > 100 GPU weeks

AlphaZero
u Single network

l instead of separate policy and value nets
l Self-play with a single, continually updated neural net
l No annotated features - just the raw board position

u Uses Monte Carlo Tree Search
u Beat AlphaGo (100-0) after just 72 hours of training

l On 5,000 TPUs

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-
chess-shogi-and-go 2017

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Monte Carlo Tree Search (MCTS)
u In each state sroot, select a move, at ~ pt either

proportionally (exploration) or greedily (exploitation)
u pick a move at with

l low visit count (not previously frequently explored)
l high move probability (under the policy
l high value (averaged over the leaf states of MC plays that

selected a from s) according to the current neural net
u The MCTS returns an estimate z of v(sroot) and a

probability distribution over moves, p = p(a|sroot)

AlphaZero loss function
NNet:
u Minimizes the error between the predicted outcome

(value function) v(s) and the actual game outcome z
u Maximizes the similarity of the policy vector p(s) to

the MCTS probabilities p(s).
u L2 regularize the weights q

RL Summary
u Why is DeepMind losing $500 million/year?

StarCraft
u StarCraft-playing AI model consists of 18 agents,

each trained with 16 Google v3 TPUs for 14 days.
u Thus, at current prices ($8.00 / TPU hour), the

company spent $774,000 on this model

