Deep Learning for NLP

(without Magic)

Richard Socher and Christopher Manning Stanford University

NAACL 2013, Atlanta http://nlp.stanford.edu/courses/NAACL2013/

*with a big thank you to Yoshua Bengio, with whom we participated in the previous ACL 2012 version of this tutorial

Deep autoencoders

Alternative to contrastive unsupervised word learning

Another is RBMs (Hinton et al. 2006), which we don't cover today

Works well for fixed input representations

- 1. Definition, intuition and variants of autoencoders
- 2. Stacking for deep autoencoders
- 3. Why do autoencoders improve deep neural nets so much?

Auto-Encoders

- Multilayer neural net with target output = input
- Reconstruction=decoder(encoder(input))

$$a = \tanh(Wx + b)$$

$$x' = \tanh(W^T a + c)$$

$$cost = ||x' - x||^2$$

 Probable inputs have small reconstruction error

PCA = Linear Manifold = Linear Auto-Encoder

The Manifold Learning Hypothesis

 Examples concentrate near a lower dimensional "manifold" (region of high density where small changes are only allowed in certain direction.

Auto-Encoders Learn Salient Variations, like a non-linear PCA

Minimizing reconstruction error forces latent representation of "similar inputs" to stay on manifold

Auto-Encoder Variants

- Discrete inputs: cross-entropy or log-likelihood reconstruction criterion (similar to used for discrete targets for MLPs)
- Preventing them to learn the identity everywhere:
 - Undercomplete (eg PCA): bottleneck code smaller than input
 - Sparsity: penalize hidden unit activations so at or near 0 [Goodfellow et al 2009]
 - Denoising: predict true input from corrupted input [Vincent et al 2008]
 - Contractive: force encoder to have small derivatives
 [Rifai et al 2011]

Sparse autoencoder illustration for images

$$[a_1, ..., a_{64}] = [0, 0, ..., 0, 0.8, 0, ..., 0, 0.3, 0, ..., 0, 0.5, 0] (feature representation)$$

Stacking Auto-Encoders

 Can be stacked successfully (Bengio et al NIPS'2006) to form highly non-linear representations

Layer-wise Unsupervised Learning

input

Layer-wise Unsupervised Learning

Layer-wise Unsupervised Learning

features

input

Supervised Fine-Tuning

Output **Target** f(X) six two! Even more abstract features More abstract features features input

Why is unsupervised pre-training working so well?

- Regularization hypothesis:
 - Representations good for P(x) are good for P(y|x)
- Optimization hypothesis:
 - Unsupervised initializations start near better local minimum of supervised training error
 - Minima otherwise not achievable by random initialization

Erhan, Courville, Manzagol, Vincent, Bengio (JMLR, 2010)

