Recitation: Bayes Nets and Friends

Lyle Ungar and Tony Liu Heavily adapted from slides by Mitch Marcus

What's your favorite word?

٠.

Recitation Plan

- ♦ Naïve Bayes Exercise
- LDA Example
- ♦ Bayes Net Exercises
- HMM Example

Recall: Naïve Bayes

Recall: Naïve Bayes

- Conditional independence assumption
- As MAP estimator (uses prior for smoothing)
 - Contrast MLE what's the problem?

Naïve Bayes Exercise

Consider the two class problem where class label Y ∈ {T, F} and each training example X has 2 binary attributes X1, X2 ∈ {T, F}. How many parameters will you need to know/estimate if you are to classify an example using the Naive Bayes classifier?

• Choose the topic distribution $\theta \sim \text{Dirichlet}(\alpha)$

- Choose the topic distribution $\theta \sim \text{Dirichlet}(\alpha)$
- For each of the N words w_n:

- For each document,
 - Choose the topic distribution $\theta \sim \text{Dirichlet}(\alpha)$
 - For each of the N words w_n:
 - Choose a topic z ~ Multinomial(θ)

 (α) (θ) (θ) (1) (2)

• For each document,

- Choose the topic distribution $\theta \sim \text{Dirichlet}(\alpha)$
- For each of the N words w_n:
 - Choose a topic z ~ Multinomial(θ)
 - Then choose a word $w_n \sim Multinomial(\beta_z)$
 - Where each topic has a different parameter vector β for the words

0.04 aene dna 0.02 0.01 genetic ... life 0.02 0.01 evolve 0.01 organism ... 0.04 brain 0.02 neuron 0.01 nerve ... 0.02 data number

1.1.1

Documents

Topic proportions and assignments

David Blei 2012: Probabilistic Topic Models (on course website)

LDA Parameter Estimation

• Given a corpus of documents, find the parameters α and β which maximize the likelihood of the observed data (words in documents), marginalizing over the hidden variables θ , z θ : topic distribution

• E-step:

 θ : topic distribution for the document, z: topic for each word in the document

- Compute p(θ,z|w,α,β), the posterior of the hidden variables (θ,z) given each document w, and parameters α and β.
- M-step
 - Estimate parameters α and β given the current hidden variable distribution estimates

You don't need to know the details; Only what is hidden and what is observed; And that EM works here.

LDA Exercise

True or False? In LDA, the words in each document are assumed to be drawn from a Dirichlet distribution. These distributions can vary across documents.

Recall: Bayes Nets

Recall: Bayes Nets

Local Markov Assumption

- given its parents, each node is conditionally independent of everything except its descendants
- Active Trails
- D Separation

Active Trails

A trail $\{X_1, X_2, \dots, X_k\}$ in the graph (no cycles) is an **active trail** if for each consecutive triplet in the trail:

◆ $X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is not observed $X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is not observed $X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is not observed $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed or one of its descendants is observed

Variables connected by active trails are not conditionally independent

D-separation

- Variables X_i and X_j are independent if there is no active trail between X_i and X_j.
 - given a set of observed variables $O \subset \{X_1, \dots, X_m\}$
 - O sometimes called a Markov Blanket

True or False? I D-separates E and L.

5

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

5

5

True or False? D \perp I | E, F, K

н.

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

4095

20

23

24

29

What is the minimum number of parameters needed to represent the full joint probability P(A, B, C, D, E, F, G, H, I, J, K, L) in the above network if all the variables are binary?

Start the presentation to see live content. Still no live content? Install the app or set help at PollEv.com/app

۳.

Recall: Hidden Markov Models

Recall: Hidden Markov Models

- Markov assumption
- ♦ Parameterization

Parameters of an HMM

- **States**: A set of states $S = S_1, ..., S_k$
- Markov transition probabilities: A =
 a_{1,1}, a_{1,2}, ..., a_{k,k} Each a_{i,j} = p(s_j | s_i) represents the probability of transitioning from state s_i to s_i.
- Emission probabilities: A set B of functions of the form b_i(o_t) = p(o|s_i) giving the probability of observation o_t being emitted by s_i
- Initial state distribution: the probability that s_i is a start state

Markov Model Example

 $S_1 = [0, 1]$

	Tomorrow's Weather		
Today's Weather		Sunny	Rainy
	Sunny	0.8	0.2
	Rainy	0.6	0.4

Markov Transition Matrix A

Steady state at [0.75, 0.25]

Hidden Markov Model Example

S₁ = [0.5, 0.5]

We observe: (umbrella, no umbrella)

We can ask questions like:

- What is the joint probability of the states (rain, sun) and our observations?

	Tomorrow's Weather		
Today's Weather		Sunny	Rainy
	Sunny	0.8	0.2
	Rainy	0.6	0.4

Markov Transition Matrix A

Weather					
	Sunny	Rainy			
Umbrella	0.1	0.8			
No Umbrella	0.9	0.2			

Emission Probabilities B

HMM Exercise

$$P(O_{t+1} = o_{t+1}, ..., O_T = o_T | O_1 = o_1, ..., O_t = o_t, S_t = k)$$

= $P(O_{t+1} = o_{t+1}, ..., O_T = o_T | S_t = k)$

True or False? The above statement about hidden Markov models holds for all $1 \le t \le T$ and k.

