I remember PollEverywhere

B) No

"Big data will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus."

- McKinsey

- Volume
- Velocity
- Variety
- Veracity

♦ Big *n* vs. big *p*

How is big data different?

- use available large-scale data rather than annotating data
- heterogeneous ("variety")

• Semi-parametric or non-parametric methods

Different methods work best at scale

Confusion set disambiguation

• Choose the correct word in the set given the context

Figure 1. Learning Curves for Confusion Set

Disambiguation

{principle, principal}
{then, than}
(to, two, too}
{weather, whether}

The unreasonable effectiveness of data

- Scene completion using millions of photographs
 - J Hays, AA Efros Communications of the ACM, 2008

How to handle big data?

- Dimensionality reduction
- Sampling
- Streaming
- Hadoop/MapReduce

Big Data: different approach

Different data handling:

- Mostly unstructured data objects (Schema-less NoSQL)
- Many attributes and data sources
- Data sources added and/or updated frequently
- Quality is unknown

Different programming philosophy:

• Distributed, fault tolerant programming

What is the slowest part of big data analysis?

- A) Multiplying X'X
- B) Inverting a matrix (X'X)⁻¹?
- c) Reading X from disk to memory?
- D) Other?

Model Parallelism

Data Parallelism

References

http://developer.yahoo.com/hadoop/ http://code.google.com/edu/parallel/mapreduce-tutorial.html

How easy is it to do in map-reduce?

- Linear regression
- Linear regression with feature selection
- ♦ SVM
- ♦ k-NN
- K-means / EM

scikit-learn

Machine Learning in Python

LDA

- Mallet
- Factorie
- Deep Nets
 - Theano
 - Caffe, Torch
 - Tensorflow

MapReduce: Hadoop's Original Data Processing Engine

Key Advances by MapReduce:

- Data Locality: Automatic split computation and launch of mappers appropriately
- Fault-Tolerance: Write out of intermediate results and restartable mappers meant ability to run on commodity hardware
- Linear Scalability: Combination of locality + programming model that forces developers to write generally scalable solutions to problems

Credit: cloudera

In Hadoop

Hive

•data warehouse: data summarization, query, and analysis.

Pig, Crunch

high-level platform for creating MapReduce programs

Mahout

•scalable machine learning and data mining

♦Solr

• enterprise search platform built on Apache Lucene

♦ Hue

visualization

Spark

Combines SQL, streaming, and complex analytics

Often runs on Hadoop

• or Mesos, or standalone, or in the cloud

Bindings to

• Java, Scala, Python, R, NLTK ...

MLIib Machine Learning Library

• Faster than Mahout

Seems to be replacing Hadoop

Increasingly use a "deep stack"

BDAS Stack

Increasing in the cloud

- X as a Service
 - SaaS (software)
 - PaaS (platform)
 - laaS (infrastructure)

◆ It's easy to spin these up on AWS or MS Azure ...

http://www.mazikglobal.com/

Tools are changing rapidly

Currently hot:

- SMACK: Spark, Mesos, Akka, Cassandra and Kafka
 - **Spark** fast engine for distributed large-scale data processing
 - Mesos distributed systems kernel
 - Akka toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications
 - Cassandra distributed database
 - **Kafka** distributed publish-subscribe messaging system
- Tensorflow

But the fundamentals we learned in this class are not changing!

Speeding up your ML code

Lyle Ungar

Photo credit http://allinguide.com/best-tips-how-tospeed-up-your-wordpress-website-or-blog/

Your ML code runs too slow; What can you do?

How to speed up your ML?

Speed up the code

- Use a faster language
- Use a cluster/multicore machine /GPU
- Vectorize
- Use a streaming algorithm
 - In features or observations
- Develop on a subset of the data
 - Or a subset of the features (univariate preprocessing)
- Do dimensionality reduction

How to speed up your ML?

Pick a faster algorithm

- Logistic regression \rightarrow ?
- Kernelized SVM → ?
- Stepwise regression \rightarrow ?
- K-NN → ?

Pick a faster algorithm

- ♦ Logistic regression → linear regression
- ♦ Kernelized SVM → linear SVM
- ♦ Stepwise regression → stagewise regression
- ♦ K-NN → K-means

How to speed up your ML: True/False

- Sparse code runs faster?
- Vector-based code runs faster?
- Models based on principle components are usually faster than one in the original features?

Take-Aways

Data variety complicates machine learning

• Data wranging, complex regularization

Many ways to speed up code

- Vectorize, run on GPU
- Use online algorithms
- Use data-parallel methods (map-reduce)
- Lots of good software
 - SKLearn, spark, tensorflow