Final Review

2020

Most requested topics

- ♦ KL-divergence
- ◆ EM
- Reinforcement learning
- Other questions
- ◆ FYI: we didn't cover PAC learning.

KL-divergence

- What does it measure?
- Where did we use it?
 - **Decision trees:** pick most informative feature
 - Neural net loss function: maximize estimated probability of true label
 - Active learning: label the most informative **x**.
 - ICA: make sources as independent as possible

KL-divergence

- Measure change in distribution $p(y|\mathbf{x}) = f(\mathbf{x})$
 - **Decision trees:** pick most informative feature x_j
 - $argmax_{xj} KL(f(\mathbf{x}|\mathbf{X}_{-j}, x_j, \mathbf{y}) || f(\mathbf{x}|\mathbf{X}_{-j}, \mathbf{y}))$
 - Neural net loss function: maximize estimated probability of true label
 - $\operatorname{argmax}_{\theta} KL(p(y|\mathbf{x}) || f(\mathbf{x}; \theta)))$
 - maximizes cross-entropy
 - Active learning: label the most informative x_i
 - $= argmax_{xi} KL(f(\mathbf{x}|\mathbf{X},\mathbf{x}_i) || f(\mathbf{x}|\mathbf{X}))$

• $\min MI(s_1, s_2, ..., s_k) = KL(p(s_1, s_2, ..., s_k) || p(s_1)p(s_2) ..., p(s_k))$

Used for:

- Missing data
- Clustering (GMM, LDA)
- ♦ E Step
 - Estimate the values of the missing data
- M Step
 - Do MLE (or MAP) estimation of the parameters

- Conditional Independence Assumption: Features are independent of each other given the class:
 P(C|X) ~ P(X|C) P(C) = P(X₁|C) P(X₂|C)...P(X₅|C) P(C)
- For language, assume $P(\sim X_j | C) = 1$
- ◆ Use MLE or MAP to estimate the parameters

Gaussian Naïve Bayes Classifier

• $P(\mathbf{X}|C): N(\mu_{C}, \Sigma_{C})$

- $\Sigma_{\rm C}$ is diagonal (= conditional independence)
- $P(C|\mathbf{X}) \sim P(\mathbf{X}|C) P(C) = P(X_1|C) P(X_2|C) \dots P(X_5|C) P(C)$

Gaussian Mixture Model

• Now, C is not observed and Σ_C can have any form

- What does the E step compute?
- What does the M step compute?

The LDA Model (for 3 docs)

For each document,

- Choose the topic distribution $\theta \sim \text{Dirichlet}(\alpha)$
- For each of the N words w_n:
 - Choose a topic z ~ Multinomial(θ)
 - Then choose a word $w_n \sim \text{Multinomial}(\beta_z)$
 - + Where each topic has a different parameter vector $\boldsymbol{\beta}$ for the words

Reinforcement Learning

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Reinforcement Learning

- ♦ Model-based (e.g., MDP) vs. model-free
- One step ahead (e.g., TD(0)) vs. Monte Carlo
- $V_{\pi}(s)$ vs. $Q_{\pi}(s,a)$
- On-policy vs. off-policy
 - SARSA: ϵ -greedy, on policy
 - **Q-learning:** ϵ -greedy action; then optimal (greedy)

Bellman's Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right], \forall s \in \mathcal{S}$$

◆ S	state	s' next state
• $V_{\pi}(S)$	value	
◆ π (a s)	policy (stochastic)	
•γ	discount factor	
◆ r	reward	
♦ p(s' s,a)	model	

Bellman's Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right], \forall s \in \mathcal{S}$$

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right], \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$

Bellman's Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right], \forall s \in \mathcal{S}$$

$$= \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right] \qquad \begin{array}{l} \text{a = } \pi \text{ (s)} \\ \text{if deterministic} \end{array}$$

 $v_{\pi}(s) := v_{\pi}(s) + \eta (r + \gamma v_{\pi}(s'))$ TD(0) estimation

Q-learning

Pick action *a* using ϵ -greedy selection over Q(s,a)

Update

$$Q(s,a) := Q(s,a) + \eta (r + \gamma max_a Q(s',a))$$

For any MDP, given infinite exploration time and a partly-random policy, *Q*-learning will find an optimal policy: one that maximizes the expected value of the total reward over all successive steps.

wikipedia

Deep Q-Learning (DQL)

$$\operatorname{Argmin}_{\theta} \left[Q(s, a; \theta) - \left(r(s, a) + \gamma \max_{a} Q(s', a; \theta) \right) \right]^{2}$$
Update this
$$\operatorname{To \ be \ closer \ to \ new}_{value \ estimate}$$

Represent Q with a neural net

s, a can be one-hot or real valued