PCA as a probabilistic model

Probabilistic model for PCA

- $\mathbf{x} \sim N(\mathbf{0}, \mathbf{I})$ latent variables (dim k)
- $y = xC + \varepsilon$ observed variables (dim p > k)
- $\epsilon \sim N(0, \delta I)$ noise (maybe small)
 - **C** is *k*p*
- Thus
 - $\mathbf{y} \sim N(\mathbf{0}, \mathbf{C}^{\mathsf{T}}\mathbf{C} + \delta \mathbf{I})$
- Take the limit where the noise is goes to zero
 - Then p(y|x) collapses with all probability mass on a single point y = xC
 - And p(x|y) collapses with all probability mass on a single point x = yC^T(CC^T)⁻¹

How does this compare

to a GMM?

EM Algorithm for PCA

- E-step find "hidden" X given parameters C
 - $X = Y C^{T} (CC^{T})^{-1}$
- find parameters **C** given "hidden" **X**)
- M-step find parameters C given "hidden" X)
 C = (X^TX)⁻¹X^TY (the standard MLE weight estimates)

for
$$\mathbf{y} = \mathbf{x}\mathbf{C} + \mathbf{\varepsilon}$$

What are the PCs? A. X B. Y C. C What are the loadings? A. X B. Y C. C

How might this model minimize L₂ reconstruction error?

Probabilistic model for CCA

- x ~ N(0,I)
 latent variables (dim k)
- $\mathbf{y} = \mathbf{xB} + \varepsilon$ observed variables (dim p > k)
- $z = xC + \varepsilon$ observed variables (dim q > k)
 - **B** is *k*p* **B** is *k*q* noise (maybe small)

• Thus

• $\varepsilon \sim N(\mathbf{0}, \delta \mathbf{I})$

- $y \sim N(0, B^{T}B + \delta I)$
- $z \sim N(0, C^TC + \delta I)$
- Take the limit where the noise is goes to zero

