Generative Models Revisited

Lyle Ungar

Which are generative models?

р(у х; θ)	a)	Yes
	b)	No

p(x; θ)

p(x,y; θ)

Generative Models

hidden	observed
s ~ p(k)	$p(\mathbf{x} s=k) = N(\mu_k, \Sigma_k)$
s ~ p(y)	$p(\mathbf{x} s=y) = N(\mu_y, \Sigma_y) = \Pi_j N(\mu_{jy}, \sigma_{jy}^2)$
s ~ N(0,I)	$\mathbf{x} = \mathbf{A} \mathbf{s} + \varepsilon$
s ~ N(0,I)	$x = A s + \varepsilon$ $y = B s + \varepsilon$

Dimensions:

s is $k \times 1$ x is $p \times 1$ y is $q \times 1$

- A) PCA
- B) CCA
- C) GMM
- **D)** Naïve Bayes

Generative models for classification

- Naïve Bayes
- K-Means/GMM

Generative models for classification

K-Means for prediction

- Cluster training points using k-means
- Find the most frequent label (or average of real-valued labels) for the points in each cluster

 $\hat{y}_k = \sum_i \sum_k I(x_i \text{ in cluster } k) y_i$

- To predict at a new x
 - —find which cluster centroid μ_k the new x is closest to
 - —look up the label or \hat{y}_k for that cluster k

Generative models for classification

- GMM for prediction
 - Estimate GMM

This is not common, so I just made it up. Is there a better way?

—estimate $\pi_k \, \mu_k, \, \Sigma_k$ for each cluster

Find the expected value of the label for each cluster

—weighting by the degree of membership of x_i in the cluster k

 $\hat{y}_k = \sum_i \sum_k p(\text{cluster}=k \mid x=x_i) y_i$

• To predict at a new x

-find the probability of x belonging to each cluster

p(cluster=k | x=x_i)

—look up the \hat{y}_k for that cluster

-the prediction is a weighted combination of those cluster labels

 $\Sigma_k p(cluster=k \mid x=x_i) \hat{y}_k$

LDA – Review

• Which symbol corresponds to each of these

- P(topic=k)
- P(topic=k) in document d
- P(word= w_j | topic=k)
- A) β_{jk}
 B) θ_k
 C) α_k
- D) z

