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Linear regression is
A) Parametric
B) Non-parametric

K-NN is
A) Parametric
B) Non-parametric

Poll Everywhere Test

• There are lots of office hours!!!!
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What symptom tells you most about 
the disease?

S1   S2     S3      D
y       n       n       y
n       y       y       y
n       y       n       n
n       n       n       n
y       y       n       y

A) S1
B) S2
C) S3

Why?



What symptom tells you most about 
the disease?

S1/D               S2/D s3/D
y  n      y     n                y     n

y 2   0 y 2   1 y 1     0
n 1   2  n 1   1 n 2     2 A) S1

B) S2
C) S3

Why?



If you know S1=n, what symptom tells 
you most about the disease?

S1   S2     S3      D
y       n       n       y
n       y       y       y
n       y       n       n
n       n       n       n
y       y       n       y

A) S1
B) S2
C) S3

Why?



Resulting decision tree
S1

y/   \n
D     S3

y/ \n
D     ~ D

The key question: what criterion to use do 
decide which question to ask?
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Bits
You observe a set of independent random samples of X

You see that X has four possible values

So you might see: BAACBADCDADDDA…

You transmit data over a binary serial link. You can encode each reading 
with two bits (e.g. A = 00, B = 01, C = 10, D = 11)
0100001001001110110011111100…

P(X=A) = 1/4 P(X=B) = 1/4 P(X=C) = 1/4 P(X=D) = 1/4
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Fewer Bits
Someone tells you that the probabilities are not equal

It is possible to invent a coding for your transmission that only 

uses 1.75 bits on average per symbol. How?

P(X=A) = 1/2 P(X=B) = 1/4 P(X=C) = 1/8 P(X=D) = 1/8
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Fewer Bits
Someone tells you that the probabilities are not equal

It is possible to invent a coding for your transmission that only 

uses 1.75 bits on average per symbol. How?

(This is just one of several ways)

P(X=A) = 1/2 P(X=B) = 1/4 P(X=C) = 1/8 P(X=D) = 1/8

A 0
B 10
C 110
D 111
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Fewer Bits
Suppose there are three equally likely values…

Here’s a naïve coding, costing 2 bits per symbol

Can you think of a coding that only needs1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

P(X=A) = 1/3 P(X=B) = 1/3 P(X=C) = 1/3

A 00
B 01
C 10
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Suppose X can have one of m values… V1, V2,  … Vm

What’s the smallest possible number of bits, on average, per symbol, 
needed to transmit a stream of symbols drawn from X’s distribution? 

It is

H(X) = The entropy of X
• �High Entropy� means X is from a uniform (boring) distribution
• �Low Entropy� means X is from varied (peaks and valleys) distribution

General Case: Entropy

mm ppppppXH 2222121 logloglog)( ----= !

P(X=V1) = p1 P(X=V2) = p2 …. P(X=Vm) = pm

å
=

-=
m

j
jj pp

1
2log



Copyright © 2001, 2003, Andrew W. Moore

Suppose X can have one of m values… V1, V2,  … Vm

What’s the smallest possible number of bits, on average, per symbol, 
needed to transmit a stream of symbols drawn from X�s distribution? 
It’s

H(X) = The entropy of X
• �High Entropy� means X is from a uniform (boring) distribution
• �Low Entropy� means X is from varied (peaks and valleys) distribution

General Case

mm ppppppXH 2222121 logloglog)( ----= !

P(X=V1) = p1 P(X=V2) = p2 …. P(X=Vm) = pm

å
=

-=
m

j
jj pp

1
2log

A histogram of the 
frequency distribution of 
values of X would be flat

A histogram of the 
frequency distribution of 
values of X would have 
many lows and one or 

two highs
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Suppose X can have one of m values… V1, V2,  … Vm

What’s the smallest possible number of bits, on average, per symbol, 
needed to transmit a stream of symbols drawn from X�s distribution? 
It’s

H(X) = The entropy of X
• �High Entropy� means X is from a uniform (boring) distribution
• �Low Entropy� means X is from varied (peaks and valleys) distribution

General Case

mm ppppppXH 2222121 logloglog)( ----= !

P(X=V1) = p1 P(X=V2) = p2 …. P(X=Vm) = pm

å
=

-=
m

j
jj pp

1
2log

A histogram of the 
frequency distribution of 
values of X would be flat

A histogram of the 
frequency distribution of 
values of X would have 
many lows and one or 

two highs
..and so the values 

sampled from it would 
be all over the place

..and so the values 
sampled from it would be 

more predictable
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Entropy in a nut-shell

Low Entropy High Entropy
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Entropy in a nut-shell

Low Entropy High Entropy..the values (locations of 
soup) unpredictable... 

almost uniformly sampled 
throughout our dining room

..the values (locations 
of soup) sampled 

entirely from within the 
soup bowl



Why does entropy have this form?

å
=

-=
m

j
jj pp

1
2log

mm ppppppXH 2222121 logloglog)( ----= !

If an event is certain, the entropy is
A) 0
B) between 0 and ½
C) ½
D) between ½ and 1
E) 1

Entropy is the expected value of the information content 
(surprise) of the message log2pj



Why does entropy have this form?

å
=

-=
m

j
jj pp

1
2log

mm ppppppXH 2222121 logloglog)( ----= !

If two events are equally likely, the entropy is
A) 0
B) between 0 and ½
C) ½
D) between ½ and 1
E) 1
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Specific Conditional Entropy H(Y|X=v)
Suppose I’m trying to predict output Y and I have input X

Let’s assume this reflects the true probabilities

e.g. From this data we estimate
• P(LikeG = Yes) = 0.5
• P(Major = Math & LikeG = No) = 0.25
• P(Major = Math) = 0.5
• P(LikeG = Yes | Major = History) = 0

Note:
• H(X) = 1.5
•H(Y) = 1

X = College Major

Y = Likes �Gladiator�

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Definition of Specific Conditional Entropy:
H(Y |X=v) = The entropy of Y among 
only those records in which X has value v

X = College Major
Y = Likes �Gladiator�

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes

Specific Conditional Entropy H(Y|X=v)
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Definition of Specific Conditional Entropy:
H(Y |X=v) = The entropy of Y among 
only those records in which X has value v
Example:
• H(Y|X=Math) = 1
• H(Y|X=History) = 0
• H(Y|X=CS) = 0

X = College Major
Y = Likes �Gladiator�

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes

Specific Conditional Entropy H(Y|X=v)



Copyright © 2001, 2003, Andrew W. Moore

Conditional Entropy H(Y|X)
Definition of Conditional Entropy:

H(Y |X) = The average specific conditional 
entropy of Y

If you choose a record at random what 
will be the conditional entropy of Y, 
conditioned on that row’s value of X

= Expected number of bits to transmit Y if 
both sides will know the value of X

= Σj Prob(X=vj) H(Y | X = vj)

X = College Major

Y = Likes �Gladiator�

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Conditional Entropy
Definition of Conditional Entropy:

H(Y|X) = The average conditional 
entropy of Y

= ΣjProb(X=vj) H(Y | X = vj)

X = College Major

Y = Likes �Gladiator�

Example:
vj Prob(X=vj) H(Y | X = vj)

Math 0.5 1

History 0.25 0

CS 0.25 0

H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Information Gain
Definition of Information Gain:

IG(Y|X) = I must transmit Y. How 
many bits on average would it save 
me if both ends of the line knew X?
IG(Y|X) = H(Y) - H(Y |X)

X = College Major
Y = Likes �Gladiator�

Example:
• H(Y) = 1
• H(Y|X) = 0.5
• Thus IG(Y|X) = 1 – 0.5 = 0.5

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Information Gain Example
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Another example



What is Information Gain used for?

If you are going to collect information from someone 
(e.g. asking questions sequentially in a decision tree), 
the “best” question is the one with the highest 
information gain.

Information gain is useful for model selection (later!)



What question did we not ask (or 
answer) about decision trees?



What you should know
• Entropy
• Information Gain
• The standard decision tree algorithm

• Recursive partition trees
• Also called: ID3/C4.5/CART/CHAID 



How is my speed?
• A) Slow
• B) Good
• C) Fast



What one thing
• Do you like about the course so far?
• Would you improve about the course so far?


