
•  The conjugate prior to a Bernoulli is 
A) Bernoulli 
B) Gaussian 
C) Beta 
D) none of the above 



•  The conjugate prior to a Gaussian is 
A) Bernoulli 
B) Gaussian 
C) Beta 
D) none of the above 



•  MAP estimates 
A) argmaxθ p(θ|D)  
B) argmaxθ p(D|θ)  
C) argmaxθ p(D|θ)p(θ) 
D) None of the above 



•  MLE estimates 
A) argmaxθ p(θ|D)  
B) argmaxθ p(D|θ)  
C) argmaxθ p(D|θ)p(θ) 
D) None of the above 



Consistent estimator 
•  A consistent estimator (or asymptotically consistent 

estimator) is an estimator — a rule for computing 
estimates of a parameter θ — having the property that 
as the number of data points used increases 
indefinitely, the resulting sequence of estimates 
converges in probability to the true parameter θ. 

https://en.wikipedia.org/wiki/Consistent_estimator 



Slide 6 

Which is consistent for our coin-
flipping example? 
A) MLE 
B) MAP 
C) Both 
D) Neither 

P(D|θ)  
P(θ|D) ~ P(D|θ)P(θ) 



Covariance 
•  Given random variables X and Y with joint density 

p(x, y) and means  E(X) = µ1, E(Y) =  µ2  
•  The covariance of X and Y is  

•  cov(X,Y) = E[(X − µ1)(Y − µ2)] 
•  cov(X, Y) = E(XY) − E(X) E(Y) 
       Proof follows easily from the definition 

cov(X, X) = var(X) 
 



Covariance 
•  If X and Y are independent then cov(X, Y) = 0. 
    A) True 
    B) False 
 
•  If  cov(X, Y) = 0 then X and Y are independent. 
    A) True 
    B) False 
 



Covariance 
•  If X and Y are independent then cov(X, Y) = 0 
•  Proof: Independence of X and Y implies that E(XY) = 

E(X)E(Y). 
•  Remark: The converse if NOT true in general. It can 

happen that the covariance is 0 but X and Y are highly 
dependent. (Try to think of an example.) 

•  For the bivariate normal case the converse does hold. 
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An introduction to regression 
Mostly by Andrew W. Moore 

But with modifications by Lyle Ungar 

Note to other teachers and users of 
these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 

to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 

your own lecture, please include this 
message, or the following link to the 

source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 

Comments and corrections gratefully 
received.  



Two interpretations of regression 
•  Linear regression 

•  ŷ = w.x  
•  Probabilistic/Bayesian (MLE and MAP) 

•  y ~ N(w.x, σ2) 
•  argmaxw p(D|w)                 here:  argmaxw p(y|w,X) 
•  argmaxw p(D|w)p(w) 

•  Error minimization 
•  |y - w.X|pp + λ |w|qq

 

But first, we’ll look at 
Gaussians 
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Single-Parameter 
Linear Regression 
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Linear Regression 

Linear regression assumes that the expected value of the output 
given an input, E[y|x], is linear. 
Simplest case: Out(x) = wx for some unknown w. 
Given the data, we can estimate w. 

inputs outputs 

     x1 = 1      y1 = 1 

     x2 = 3      y2 = 2.2 

     x3 = 2      y3 = 2 

     x4 = 1.5      y4 = 1.9 

     x5 = 4      y5 = 3.1  ← 1 → 

↑ 
w 
↓ 
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1-parameter linear regression 
Assume that the data is formed by 

yi  = wxi + noisei 
where… 
•  the noise signals are independent 
•  the noise has a normal distribution with mean 0 and unknown 

variance σ2  
p(y|w,x) has a normal distribution with 
•  mean wx 
•  variance σ2  
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Bayesian Linear Regression 
p(y|w,x) = Normal (mean: wx, variance: σ2) 

y ~ N(wx, σ2) 
We have a set of data (x1,y1) (x2,y2) … (xn,yn) 
We want to infer w from the data. 

p(w|x1, x2, x3,…xn, y1, y2…yn) = P(w|D) 
• You can use BAYES rule to work out a posterior 
distribution for w given the data. 
• Or you could do Maximum Likelihood Estimation 
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Maximum likelihood estimation of w 

MLE asks : 
“For which value of w is this data most likely to have happened?” 

  <=> 
For what w is 

 p(y1, y2…yn |w, x1, x2, x3,…xn) maximized? 
  <=> 

For what w is   maximized? ),(
1

i

n

i
i xwyp∏

=



Copyright © 2001, 2003, Andrew W. Moore 

For what w is 
  

 

For what w is 
  

 
For what w is 

  

 
For what w is 

  

 

maximized?  ),(
1

i

n

i
i xwyp∏

=

maximized? ))(
2
1exp( 2

1 σ
ii wxy

n

i

−

=
∏ −

maximized? 
2

1 2
1

⎟
⎠

⎞
⎜
⎝

⎛ −
−∑

= σ
ii

n

i

wxy

( ) minimized? 
2

1
∑
=

−
n

i
ii wxy



First result 
•  MLE with Gaussian noise is the same as 

minimizing the L2 error 

Copyright © 2001, 2003, Andrew W. Moore 

argmin yi −wxi( )
i=1

n

∑
2
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Linear Regression 

   The maximum 
likelihood w is the 
one that minimizes 
sum-of-squares of 
residuals 

We want to minimize a quadratic function of w. 

( )

( ) ( ) 222

2

2 wxwyxy

wxy

i
i

iii

i
ii

∑∑ ∑

∑

+−=

−=Ε

E(w) w 
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Linear Regression 
    Easy to show the sum of 

squares is minimized 
when 

2
∑
∑=

i

ii

x

yx
w

   The maximum likelihood 
model is 

       We can use it for prediction 

Out x( ) = wx
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Linear Regression 
Easy to show the sum of 

squares is minimized 
when 

2
∑
∑=

i

ii

x

yx
w

  The maximum likelihood 
model is 

We can use it for prediction 

Note:   In Bayesian stats you’d have 
ended up with a prob distribution of w 

And predictions would have given a prob 
disribution of expected output 

Often useful to know your confidence.  
Max likelihood can give some kinds of 
confidence too. 

p(w) 

w 

( ) wxx =Out



But what about MAP? 
•  MLE 

•  MAP 
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argmax p(yi
i=1

n

∏ w, xi ) 

argmax p(yi
i=1

n

∏ w, xi )p(w) 



But what about MAP? 
•  MAP 

 
•  We assumed  

•  yi ~ N(w xi, σ2) 
•  Now add a prior that assumption that 

•  w ~ N(0, γ2) 

argmax p(yi
i=1

n

∏ w, xi )p(w) 
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For what w is 
  

 

For what w is 
  

 
For what w is 

  

 
For what w is 

  

 

p(yi
i=1

n

∏ w, xi ) p(w)  maximized?

exp(− 1
2i=1

n

∏ ( yi−wxi

σ
)2 ) exp(− 1

2
(w
γ

)2 )maximized?

−
1
2i=1

n

∑ yi −wxi
σ

#

$
%

&

'
(

2

 − 1
2

(w
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)2 maximized?

yi −wxi( )
i=1

n

∑
2

+ (σw
γ

)2  minimized?



Second result 
•  MAP with a Gaussian prior on w is the same as 

minimizing the L2 error plus an L2 penalty on w 
 
 
•  This is called 

•  Ridge regression 
•  Shrinkage 
•  Regularization 
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argmin yi −wxi( )
i=1

n

∑
222

+λw2  



•  The speed of lectures is 
•  A) too slow 
•  B) good 
•  C) too fast 

Copyright © Andrew W. Moore 
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Multivariate Linear 
Regression 
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Multivariate Regression 
What if the inputs are vectors? 

Dataset has form x1                      y1 
x2                      y2 
x3                      y3 
.:                                    : 

. 
xn                      yn 

2-d input 
example 

x1  

 

x2 
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Multivariate Regression 
Write matrix X and Y thus: 

x =

.....x1.....

.....x2.....
!

.....xn.....

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

x11 x12 ... x1p

x21 x22 ... x2 p

!
xn1 xn2 ... xnp

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  y =

y1

y2

!
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(There are R data points.  Each input has m components) 

The linear regression model assumes a vector w such that 

Out(x) = x .w = w1x[1] + w2x[2] + ….wpx[p] 

The max. likelihood w is w = (XTX) -1(XTy) 
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Multivariate Regression 
Write matrix X and Y thus: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

RRmRR

m

m

R y

y
y

xxx

xxx
xxx

!!!
2

1

21

22221

11211

2   

...

...

...

..........

..........

..........

y

x

x
x

x

1

(There are R datapoints.  Each input has m components) 

The linear regression model assumes a vector w such that 

Out(x) = wTx = w1x[1] + w2x[2] + ….wmx[D] 

The max. likelihood w is w = (XTX) -1(XTY) 

IMPORTANT EXERCISE:  
PROVE IT !!!!! 
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Multivariate Regression (con’t) 
 

The max. likelihood w is w = (XTX)-1(XTy) 
 
 
XTX is an m x m matrix:  i,jth element is 
 
 
XTY is an m-element vector:  i’th element 

∑
=

R

k
kjki xx

1

xkiyk
k=1

R

∑
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Constant Term in 
Linear Regression 
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What about a constant term? 
We may expect linear 
data that does not go 
through the origin. 
 
Statisticians and Neural 
Net Folks all agree on a 
simple obvious hack. 
Can you guess?? 
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The constant term 
•  The trick is to create a fake input “X0” that always 

takes the value 1 
X1 X2 Y 
2 4 16 
3 4 17 
5 5 20 

X0 X1 X2 Y 
1 2 4 16 
1 3 4 17 
1 5 5 20 

Before: 
Y=w1X1+ w2X2  

…has to be a poor 
model 

After: 
Y= w0X0+w1X1+ w2X2  
  = w0+w1X1+ w2X2  

…has a fine constant term 

In this example, 
You should be able 

to see the MLE 
w0 , w1 and w2 by 

inspection  
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Linear Regression 
with varying noise 

Heteroscedasticity
... 
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Regression with varying noise 
•  Suppose you know the variance of the noise that was 

added to each datapoint. 

x=0 x=3 x=2 x=1 
y=0 

y=3 

y=2 

y=1 

σ=1/2 

σ=2 

σ=1 
σ=1/2 

σ=2 xi yi σi
2 

½ ½ 4 

1 1 1 

2 1 1/4 

2 3 4 

3 2 1/4 

),(~ 2
iii wxNy σAssume 
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MLE estimation with varying noise 
=),,...,,,,...,,|,...,,(log 22

2
2
12121argmax wxxxyyyp

w
RRR σσσ

=
−

∑
=

R

i i

ii wxy

w 1
2

2)(argmin
σ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−
∑
=

0)(such that 
1

2

R

i i

iii wxyxw
σ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑

∑

=

=

R

i i

i

R

i i

ii

x

yx

1
2

2
1

2

σ

σ

Assuming independence 
among noise and then 

plugging in equation for 
Gaussian and simplifying. 

Setting dLL/dw 
equal to zero 

Trivial algebra 
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This is Weighted Regression 
•  We are asking to minimize the weighted sum of squares 

x=0 x=3 x=2 x=1 
y=0 

y=3 

y=2 

y=1 

σ=1/2 

σ=2 

σ=1 
σ=1/2 

σ=2 

∑
=

−R

i i

ii wxy

w 1
2

2)(argmin
σ

2

1

iσwhere weight for i’th datapoint is 
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Non-linear 
Regression 
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Non-linear Regression 
•  Suppose you know that y is related to a function of x in such a way 

that the predicted values have a non-linear dependence on w, e.g: 

x=0 x=3 x=2 x=1 
y=0 

y=3 

y=2 

y=1 

xi yi 

½ ½ 
1 2.5 
2 3 
3 2 
3 3 

),(~ 2σii xwNy +Assume 
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Non-linear MLE estimation 
=),,,...,,|,...,,(log 2121argmax wxxxyyyp

w
RR σ

( ) =+−∑
=

R

i
ii xwy

w 1

2argmin

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

+−
∑
=

0such that 
1

R

i i

ii

xw
xwy

w

Assuming i.i.d. and 
then plugging in 

equation for Gaussian 
and simplifying. 

Setting dLL/dw 
equal to zero 
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Non-linear MLE estimation 
=),,,...,,|,...,,(log 2121argmax wxxxyyyp

w
RR σ

( ) =+−∑
=

R

i
ii xwy

w 1

2argmin

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

+−
∑
=

0such that 
1

R

i i

ii

xw
xwy

w

Assuming i.i.d. and 
then plugging in 

equation for Gaussian 
and simplifying. 

Setting dLL/dw 
equal to zero 

We’re down the 
algebraic toilet 

So guess w
hat 

we do? 
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Non-linear MLE estimation 
=),,,...,,|,...,,(log 2121argmax wxxxyyyp

w
RR σ

( ) =+−∑
=

R

i
ii xwy

w 1

2argmin

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

+−
∑
=

0such that 
1

R

i i

ii

xw
xwy

w

Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying. 

Setting dLL/dw 
equal to zero 

We’re down the 
algebraic toilet 

So guess w
hat 

we do? 

Common (but not only) approach: 
Numerical Solutions: 
•  Line Search 
•  Simulated Annealing 
•  Gradient Descent 
•  Conjugate Gradient 
•  Levenberg Marquart 
•  Newton’s Method 

Also, special purpose statistical-
optimization-specific tricks such 
as E.M. (See Gaussian Mixtures 
lecture for introduction) 



Copyright © 2001, 2003, Andrew W. Moore 

Polynomial 
Regression 
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Polynomial Regression 
So far we’ve mainly been dealing with linear regression 

X1 X2 Y 

3 2 7 

1 1 3 

: : : 

3 2 

1 1 

: : 

7 

3 

: 

X= y= 

x1=(3,2).. y1=7.. 
1 3 2 

1 1 1 

: : 

7 

3 

: 

Z= y= 

z1=(1,3,2).. 

zk=(1,xk1,xk2) 

y1=7.. 

β=(ZTZ)-1(ZTy) 
 

yest = β0+ β1 x1+ β2 x2 
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Quadratic Regression 
It’s trivial to do linear fits of fixed nonlinear basis functions 

X1 X2 Y 

3 2 7 

1 1 3 

: : : 

3 2 

1 1 

: : 

7 

3 

: 

X= y= 

x1=(3,2).. y1=7.. 
1 3 2 9 6 4 

1 1 1 1 1 1 

: : 

7 

3 

: 

Z= 
y= 

z=(1 ,  x1,   x2 ,   x1
2, x1x2,x2

2
,) 

β=(ZTZ)-1(ZTy) 
 

yest = β0+ β1 x1+ β2 x2+ 
β3 x1

2 + β4 x1x2 + β5 x2
2 
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Quadratic Regression It’s trivial to do linear fits of fixed nonlinear basis functions 
X1 X2 Y 

3 2 7 

1 1 3 

: : : 

3 2 

1 1 

: : 

7 

3 

: 

X= y= 

x1=(3,2).. y1=7.. 
1 3 2 9 6 4 

1 1 1 1 1 1 

: : 

7 

3 

: 

Z= 
y= 

z=(1 ,  x1,   x2 ,   x1
2, x1x2,x2

2
,) 

β=(ZTZ)-1(ZTy) 
 

yest = β0+ β1 x1+ β2 x2+ 
β3 x1

2 + β4 x1x2 + β5 x2
2 

Each component of a z vector is called a term. 

Each column of the Z matrix is called a term column 

How many terms in a quadratic regression with m inputs? 

• 1 constant term 

• m linear terms 

• (m+1)-choose-2 = m(m+1)/2 quadratic terms 

(m+2)-choose-2 terms in total = O(m2) 

 

Note that solving β=(ZTZ)-1(ZTy) is thus O(m6) 
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Qth-degree polynomial Regression 
X1 X2 Y 

3 2 7 

1 1 3 

: : : 

3 2 

1 1 

: : 

7 

3 

: 

X= y= 

x1=(3,2).. y1=7.. 
1 3 2 9 6 … 

1 1 1 1 1 … 

: … 

7 

3 

: 

Z= 
y= 

z=(all products of powers of inputs in which sum of 
powers is q or less,) 

β=(ZTZ)-1(ZTy) 
 

yest = β0+  
β1 x1+… 
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m inputs, degree Q: how many terms? 
= the number of unique terms of the form 

Qqxxx
m

i
i

q
m

qq m ≤∑
=1

21   where...21

Qqxxx
m

i
i

q
m

qqq m =∑
=0

21   where...1 210

= the number of unique terms of the form 

= the number of lists of non-negative integers [q0,q1,q2,..qm] in which Σqi 
= Q 

= the number of ways of placing Q red disks on a row of squares of length 
Q+m       = (Q+m)-choose-Q 

Q=11, m=4 

q0=2 q2=0 q1=2 q3=4 q4=3 



What we have seen 
•  MLE with Gaussian noise is the same as minimizing 

the L2 error 
•  Other noise models will give other loss functions 

•  MLE with a Gaussian prior adds a penalty to the L2 
error, giving Ridge regression 
•  Other priors will give different penalties 

•  One can make nonlinear relations linear by 
transforming the features 
•  Polynomial regression 
•  Radial Basis Functions (RBF) – will be covered later 
•  Kernel regression (more on this later) 


