An introduction to regression

Mostly by Andrew W. Moore
But with modifications by Lyle Ungar

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials. Comments and corrections gratefully received.
Two interpretations of regression

- **Linear regression**
 - $\hat{y} = w \cdot x$

- **Bayesian (MLE and MAP)**
 - $y \sim N(w \cdot x, \sigma^2)$
 - $\arg\max_w p(D|w)$ - here: $\arg\max_w p(Y|w, X)$
 - $\arg\max_w p(D|w)p(w)$

- **Error minimization**
 - $|y - w \cdot x|^p + \lambda |w|^q$
Single-Parameter Linear Regression
Linear Regression

Linear regression assumes that the expected value of the output given an input, $E[y|x]$, is linear.

Simplest case: $Out(x) = wx$ for some unknown w.

Given the data, we can estimate w.

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = 1$</td>
<td>$y_1 = 1$</td>
</tr>
<tr>
<td>$x_2 = 3$</td>
<td>$y_2 = 2.2$</td>
</tr>
<tr>
<td>$x_3 = 2$</td>
<td>$y_3 = 2$</td>
</tr>
<tr>
<td>$x_4 = 1.5$</td>
<td>$y_4 = 1.9$</td>
</tr>
<tr>
<td>$x_5 = 4$</td>
<td>$y_5 = 3.1$</td>
</tr>
</tbody>
</table>
1-parameter linear regression

Assume that the data is formed by

\[y_i = wx_i + \text{noise}_i \]

where...

- the noise signals are independent
- the noise has a normal distribution with mean 0 and unknown variance \(\sigma^2 \)

\(p(y|w,x) \) has a normal distribution with

- mean \(wx \)
- variance \(\sigma^2 \)
Bayesian Linear Regression

\[p(y|w,x) = \text{Normal (mean } wx, \text{ var } \sigma^2) \]
\[Y \sim N(wx, \sigma^2) \]

We have a set of data \((x_1,y_1) (x_2,y_2) \ldots (x_n,y_n)\)

We want to infer \(w\) from the data.

\[p(w|x_1, x_2, x_3, \ldots x_n, y_1, y_2 \ldots y_n) = P(w|D) \]

• You can use BAYES rule to work out a posterior distribution for \(w\) given the data.

• Or you could do Maximum Likelihood Estimation
Maximum likelihood estimation of w

MLE asks the:

“For which value of w is this data most likely to have happened?”

\Rightarrow

For what w is

$$p(y_1, y_2 \ldots y_n | x_1, x_2, x_3, \ldots x_n, w)$$

maximized?

\Rightarrow

For what w is

$$\prod_{i=1}^{n} p(y_i | w, x_i)$$

maximized?
For what w is
\[
\prod_{i=1}^{n} p(y_i | w, x_i) \text{ maximized?}
\]

For what w is
\[
\prod_{i=1}^{n} \exp\left(-\frac{1}{2} \left(\frac{y_i - wx_i}{\sigma}\right)^2\right) \text{ maximized?}
\]

For what w is
\[
\sum_{i=1}^{n} - \frac{1}{2} \left(\frac{y_i - wx_i}{\sigma}\right)^2 \text{ maximized?}
\]

For what w is
\[
\sum_{i=1}^{n} (y_i - wx_i)^2 \text{ minimized?}
\]
First result

- MLE with Gaussian noise is the same as minimizing the L_2 error

$$\arg\min \sum_{i=1}^{n} \left(y_i - wx_i \right)^2$$
Linear Regression

The maximum likelihood \mathbf{w} is the one that minimizes sum-of-squares of residuals.

$$E = \sum_i \left(y_i - w x_i \right)^2$$

$$= \sum_i y_i^2 - \left(2 \sum x_i y_i \right) w + \left(\sum x_i^2 \right) w^2$$

We want to minimize a quadratic function of w.
Linear Regression

Easy to show the sum of squares is minimized when

\[w = \frac{\sum x_i y_i}{\sum x_i^2} \]

The maximum likelihood model is

\[\text{Out}(x) = wx \]

We can use it for prediction
Linear Regression

Easy to show the sum of squares is minimized when

\[w = \sum x_i y_i \div \sum x_i^2 \]

The maximum likelihood model is

\[\text{Out}(x) = wx \]

We can use it for prediction

Note: In Bayesian stats you’d have ended up with a prob dist of \(w \)

And predictions would have given a prob dist of expected output

Often useful to know your confidence.

Max likelihood can give some kinds of confidence too.
But what about MAP?

- **MLE**

 \[
 \text{arg max } \prod_{i=1}^{n} p(y_i | w, x_i)
 \]

- **MAP**

 \[
 \text{argmax } \prod_{i=1}^{n} p(y_i | w, x_i) p(w)
 \]
But what about MAP?

- **MAP**

\[
\arg\max \prod_{i=1}^{n} p(y_i \mid w, x_i) p(w)
\]

- **We assumed**
 - \(y_i \sim N(w \cdot x_i, \sigma^2) \)

- **Now add a prior that assumption that**
 - \(w \sim N(0, \gamma^2) \)
For what w is

$$\prod_{i=1}^{n} p(y_i | w, x_i) p(w) \text{ maximized?}$$

For what w is

$$\prod_{i=1}^{n} \exp\left(-\frac{1}{2} \left(\frac{y_i - wx_i}{\sigma}\right)^2\right) \exp\left(-\frac{1}{2} \left(\frac{w}{\gamma}\right)^2\right) \text{maximized?}$$

For what w is

$$\sum_{i=1}^{n} -\frac{1}{2} \left(\frac{y_i - wx_i}{\sigma}\right)^2 - \frac{1}{2} \left(\frac{w}{\gamma}\right)^2 \text{maximized?}$$

For what w is

$$\sum_{i=1}^{n} (y_i - wx_i)^2 + \left(\frac{\sigma w}{\gamma}\right)^2 \text{ minimized?}$$
Second result

- MAP with a Gaussian prior on w is the same as minimizing the L_2 error plus an L_2 penalty on w

\[
\arg\min \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda w^2
\]

- This is called
 - Ridge regression
 - Shrinkage
 - Regularization