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The basic Hidden Markov Model, in pictures
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Figure: HMM with states ht , ht+1, and ht+2 which emit observations xt ,
xt+1, and xt+2 respectively.
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process is Markovian
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2. Given the hidden states, the observations are independent
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The Hidden Markov Model parameters
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When spectral methods apply

Let v be the dimension of your observations, and k be the
dimension of your hidden state space

k << v

While observations lie in high-dimensional space v , they
distributionally move on a much smaller subspace of dimension k.
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Traditional formula
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only need A(x).
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The HKZ formulation
To estimate the B(x) matrices, we need the first three moments...

E [x1] =

E [x2 ⊗ x1] =

E [x3 ⊗ x1, x2] = · · ·

v such matrices, one for each word x

And an eigendictionary U that maps the moments to the lower
dimensional subspace...
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More about U

U maps observations x to a lower dimensional y in a way that
preserves the underyling dynamics of x .

SVD

=

U (on SVD of E [x2 ⊗ x1])

I In the case of words, words that are distributionally similar will
map closely together in y -space.

I Example: “I will let him know” and “I will let her know”, but
not “I will let box know”
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U projection, first two dimension

Figure: Projection of words onto the first two dimensions of the U matrix



U projection, second two dimensions

Figure: Projection of words onto the second two dimensions of the U
matrix
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An alternate way to think of these is to simply stack them
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What changes?

Old way
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Tensor version

I One single tensor for all
words

I Have a function that takes a
vector (the word) to a
matrix

So the natural question is, can we reduce the dimensionality of the
third mode of the tensor?
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Reduced Dimensional HMM
Yes! Calculate the three first moments using the reduced
dimensional observations y = U>x .

E [y1] =

E [y2 ⊗ y1] =

E [y3 ⊗ y1 ⊗ y2] =

Using these moments we construct a function C (α) such that

P(x1, . . . , xT ) = c>∞C (yT ) · · ·C (y1)c1
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The fully reduced formula

P(Kilroy was here) = c>∞ C (U>here) C (U>was) C (U>Kilroy) c1

In pictures:

C (U>Kilroy)C (U>was)C (U>here)
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Typical theorem

Theorem: Foster, Rodu, Ungar

Let Xt be generated by an m ≥ 2 state HMM. Suppose we are
given a U which has the property that range(O) ⊂ range(U) and
|Uij | ≤ 1. Using N independent triples, we have

N ≥ 128m2

( 2t+3
√

1 + ε− 1)2 Λ2σ4
m

log

(
2m

δ

)
·

≈1︷ ︸︸ ︷
ε2/(2t + 3)2

( 2t+3
√

1 + ε− 1)2

implies that

1− ε ≤

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

holds with probability at least 1− δ.
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Trees

Extension to hidden variable tree models
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TL
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TR
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I Very similar to structure of Hidden Markov Models
I Requires a few modifications, for instance

1. Defining left and right transition parameters
2. Estimating additional skip-bigram matrix instead of just

bigram.
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topology

I Sum over all possible hidden states (not shown on this slide)

I Can be used for re-ranking output from a parser
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A Unified View

We’ve learned something valuable from the reduced dimensional
spectral HMM.

Estimation of the hidden state dynamics in spectral estimation is a
separate problem from estimation of the output distribution.

I Any function of the data that preserves the underlying
dynamic structure can be used to the first three moments of
the data and build the tensor C (α).

I The tensor C (α) fully encodes all of the information for the
hidden state dynamics.

I Estimation of the observation distribution lies in the choice of
α, and how α plugs into the tensor C (α).

I For HKZ, α = x
I For the RDHMM, α = y
I For a general distribution, α = E [yt+1|xt ] = g(xt).
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The fully factored approach: A few example extensions

Factorial HMM

I One model of stock return covariance matrices is that they
are generated by an HMM with parameters that vary over
time, themselves according to an HMM

I Requires ability to estimate HMM with matrix-valued output,
which is possible with the factored approach

Occasionally available external information

I Consider a system in which external information is
occasionally available that might refine our hidden state belief

I Amazon Mechanical Turk- have people intermittently label a
stochastic process (e.g. text or images) as a way to recalibrate
an automatic labeling.

I Requires ability to modify the probability of seeing an
observation given the hidden states, now possible with the
fully factored approach!
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Spectral Estimation of HMMs
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Thanks!!

Papers
Using Regression for Spectral Estimation, Foster, Rodu, Ungar, Wu
2013
Two Step CCA: A new spectral method for estimating vector
models of words, Dhillon, Foster, Rodu, Ungar 2013
Spectral Dependency Parsing with Latent Variables, Collins, Dhillon,
Foster, Rodu, Ungar 2012
Spectral Demensionality Reduction for HMMs, Foster, Rodu, Ungar
2012

In Progress
Spectral Estimation of HMMs with a continuous output
distribution, Foster (in progress)
Spectral Estimation of hierarchical HMMs, Foster, Rodu, Sedoc,
Ungar (in progress)
An MDP clustering of neurons by their hidden state paths Jensen,
Rodu, Small (in progress)



Thanks!


