Kernels

Learning objectives
Kernel definition and
examples
RBF algorithm
Compare kernel regression
with KNN and RBF

Lyle Ungar

What is a kernel?

- k(x,y)
 - Measures the similarity between a pair of points x and y
 - Symmetric and positive definite
- Example: Gaussian kernel
 - $k(x,y) = \exp(-||x y||^2/\sigma^2)$
- Uses
 - · K-NN
 - RBF
 - Kernel regression

Kernel definition

A symmetric function $k(\mathbf{x}_i, \mathbf{x}_j): \mathbf{X} \times \mathbf{X} \rightarrow \mathbb{R}$ is a positive definite kernel on \mathbf{X} if

 $\Sigma_{i,j} c_i c_j k(\mathbf{x}_i, \mathbf{x}_j) \ge 0$ for all $c_i c_j \mathbf{x}_i, \mathbf{x}_j$ summed over any set of i,j pairs

What is a kernel?

- k(x,y)
 - Measures the similarity between a pair of points x and y
 - Symmetric and positive definite
 - Often tested using a Kernel Matrix,
 - a PSD matrix **K** with elements $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ from all pairs of rows of a matrix X of predictors
 - A PSD matrix has only non-negative singular values

Uses

• Anywhere you want to replace inner products $x_1^Tx_2$ with inner products of $\phi(x_1)^T \phi(x_2) = k(x_1, x_2)$

How are kernels selected?

- Linear kernel
 - $k(x,y) = x^Ty$
- Gaussian kernel
 - $k(x,y) = \exp(-||x y||^2/\sigma^2)$
- Quadratic kernel
 - $k(x,y) = (x^Ty)^2 \text{ or } (x^Ty + 1)^2$
- Combinations and transformations of kernels

Radial Basis Functions (RBFs)

- 1) Pick k basis function centers μ_i
- **2)** Let $h(\mathbf{x}) = w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_k \phi_k(\mathbf{x})$

where

$$\phi_j(\mathbf{x}) = k(\mathbf{x}, \ \mu_j) = \exp(-||\mathbf{x} - \mu_j||_2^2/C)$$

3) Estimate w using linear regression

RBFs can do ...

- Use k
 - Dimensionality reduction
 - Good for high dimensional feature spaces
- Use k > p basis vectors
 - Increases the dimensionality
 - Can make a formerly nonlinear problem linear
- Use k=n basis vectors
 - We will use this to switch to a dual representation

How to find the kernel centers?

- Pick random points
 - Generally a bad idea
- RBF: do k-means clustering and use the centers of the clusters
 - Works great!
- Use all n of the training data points as kernel centers
 - Requires regularization
- **◆** Estimate them: nonlinear regression
 - A good initialization helps

Kernel Regression

$$\hat{y}(\mathbf{x}) = \frac{\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i) y_i}{\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i)}$$

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.KernelRegression

Kernel classification

$$\hat{y}(\mathbf{x}) = sign(\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i) y_i)$$

KNN vs Kernel regression

- ♦ When is k-NN better than kernel regression?
- ◆ When is kernel regression better than k-NN

Positive Semi-Definite (PSD)?

[12] is positive semi-definite?[21]

◆ A'A is guaranteed positive semi-definite?

◆ A positive semi-definite matrix can have negative entries in it?

◆ The covariance matrix is PSD?

True or False?

