Constrained optimization

Lagrange Multipliers

Les mathématiques sont comme le porc, tout en est bon. -Joseph-Louis Lagrange



Constrained optimization

• What constraints might we want for ML?

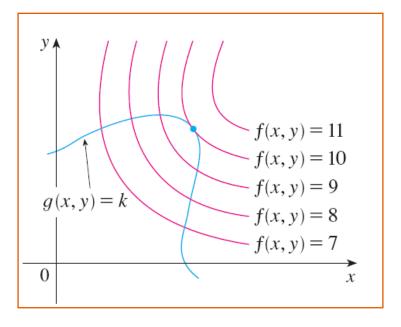
- Probabilities sum to 1
- Regression weights non-negative
- Regression weights less than a constant
- More generally
 - Fixed amount of money or time or energy available

Lagrange multipliers - example

- To maximize f(x,y)
 subject to g(x,y) = k
 find:
 - The largest value of c such that the level curve f(x,y) = c intersects g(x,y) = k.
 - This happens when the lines are parallel

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

This example *maximizes*; we'll mostly *minimize*



The same approach works for inequality constraints

Lagrange multipliers – the idea

Find

 $\begin{array}{ll} \min_{\mathbf{x}} f(\mathbf{x}) & --\mathbf{x} \ was \ (x,y) \ on \ the \ last \ slide \\ \mathbf{s.t.} \\ c_i(\mathbf{x}) = 0 \quad j=1 \dots m & --c_1(x) \ was \ g(x)-k \ on \ the \ last \ slide \\ \end{array} \\ \begin{array}{ll} \mathbf{Set} \\ L(\mathbf{x},\lambda) = \mathbf{f}(\mathbf{x}) + \lambda^{\mathsf{T}} \mathbf{c}(\mathbf{x}) \\ \mathbf{At \ the \ minimum \ of \ L}(\mathbf{x},\lambda) \\ dL/d\mathbf{x} = df/d\mathbf{x} + \lambda^{\mathsf{T}} d\mathbf{c}/d\mathbf{x} = 0 \\ dL/d\lambda = \mathbf{c}(\mathbf{x}) = 0 \end{array} \\ \end{array}$

Lagrange multipliers – generalization Find

$$\begin{split} \min_{\mathbf{x}} f(\mathbf{x}) \\ \text{s.t.} \\ c_{i}(\mathbf{x}) &\leq 0 \quad j=1...m \\ & \text{Set} \\ & L(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda^{\mathsf{T}} \mathbf{c}(\mathbf{x}) \\ & \text{At the minimum of } L(\mathbf{x},\lambda) \\ & \text{dL/d}\mathbf{x} = df/d\mathbf{x} + \lambda^{\mathsf{T}} d\mathbf{c}/d\mathbf{x} = 0 \\ & \lambda_{i} c_{i}(\mathbf{x}) = 0 \quad j=1...m \\ & \lambda_{i} \geq 0 \quad j=1...m \end{split}$$

KKT = Karush Kuhn Tucker conditions

Complementary Slackness

For each λ_j , either $\lambda_j = 0$ (the constraint is not active) or $\lambda_j > 0$ (the constraint is active) and thus $c_i(x) = 0$

Lagrange multiplier steps

1. Start with the primal

minimize $f_0(x)$, subject to $f_i(x) \le 0$, i = 1, ..., m $h_i(x) = 0$, i = 1, ..., p

2. Formulate L

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x).$$

3. Find $g(\lambda) = \min_{\mathbf{x}} (L)$

solve dL/dx = 0

- **4. Find** max $g(\lambda, \nu)$ s.t. $\lambda_i \ge 0$ $\nu_i \ge 0$
- 5. See if the constraints are binding
- **6.** Find *x**

$$g(\lambda^{\star}) = f(x^{\star})$$

Lagrange multiplier steps

1. Start with the primal

minimize $\frac{1}{2}cx^2$ subject to $ax - b \le 0$ **2. Formulate** *L*

$$L(x,\lambda) = \frac{1}{2}cx^2 + \lambda(ax-b).$$

3. Find $g(\lambda) = \min_{x} (L)$ solve dL/dx = 0

plug back into L

$$\frac{cx + \lambda a = 0 \rightarrow x = -\lambda \frac{a}{c}}{g(\lambda)} = \frac{1}{2}c \left(-\lambda \frac{a}{c}\right)^2 + \lambda a \left(-\lambda \frac{a}{c}\right) - \lambda b$$
$$= \frac{-a^2}{2c}\lambda^2 - \lambda b.$$

4. Find $max g(\lambda, \nu) s.t. \lambda_i \ge 0$

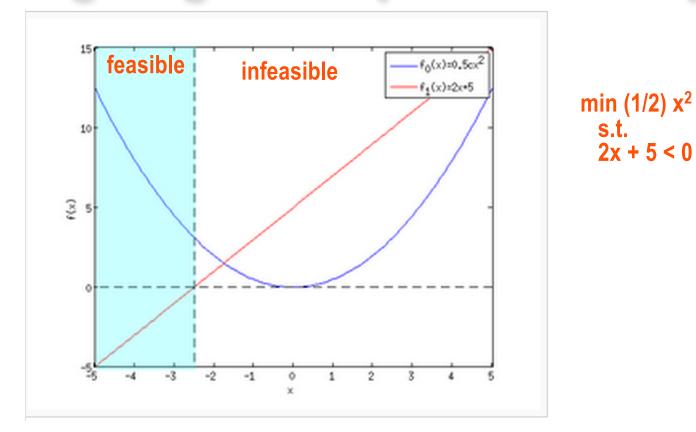
try maximizing without constraints

$$\frac{-a^2}{c}\lambda - b = 0 \quad \to \quad \lambda^\star = \frac{-bc}{a^2}.$$

5. See if the constraints are binding

it depends on the sign of –bc **6. Find** x^* plug λ^* into x= - λ (a/c) giving x = b/a

Lagrange multipliers visually



a=2, b=-5, c=1

Solve

maximize f(x,y) = x + ysubject to

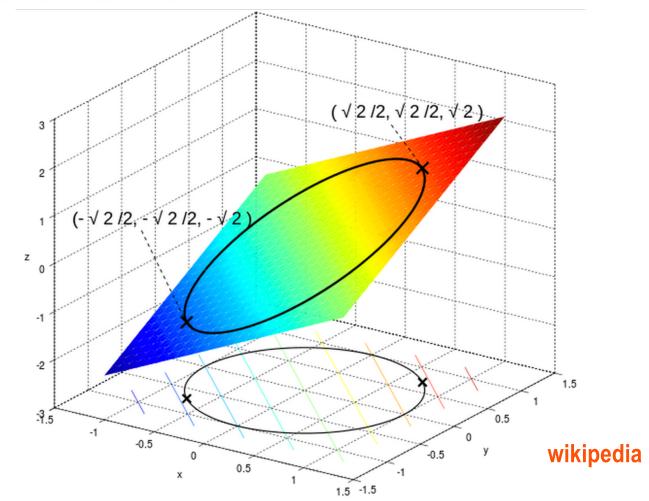
 $x^2 + y^2 - 1 = 0$ **Answer: x*** = (x,y) = ??

- 1. Start with the primal 2. Formulate $L = f_0(\mathbf{x}) + \lambda f_1(\mathbf{x})$ 3. Find $min_{\mathbf{x}} (L) = g(\lambda)$

- 4. Find $max g(\lambda)$ 5. See if constraints are binding
- 6. Find **x***

Note that we formulate the problem in terms of minimization!!!

The answer



Formulate and solve

Find values of a set of k probabilities $(p_1, p_2, ..., p_k)$ that maximize their entropy

minimize f(p) = ??subject to ?? Answer: $p_i = ??$

- 1. Start with the primal
- 2. Formulate *L*
- 3. Find $min_{\mathbf{x}}(L) = g(\lambda)$
- 4. Find $\max g(\lambda)$ 5. See if constraints are binding
- 6. Find x^*

Formulate

Find values of a vector of *p* non-negative weights *w* that minimize $\sum_i (y_i - x_i^T w)^2$

minimize
f(w) = ??
subject to
??

Lagrange multiplier steps

1. Start with the primal $\min_{W} \sum_{i} (y_{i} - \mathbf{x}_{i} \mathbf{w})^{2}$ $s.t. - w_{j} < 0$ 2. Formulate L $L(\mathbf{w}, \lambda) = \sum_{i} (y_{i} - \mathbf{x}_{i} \mathbf{w})^{2} - \sum_{j} \lambda_{j} w_{j} = \sum_{i} (y_{i} - \mathbf{x}_{i} \mathbf{w})^{2} - \lambda^{T} \mathbf{w}$ 3. Find $g(\lambda) = \min_{W} (L)$ $\operatorname{solve} dL/dW = 0 \quad 2\sum_{i} \mathbf{x}_{i}^{T} (y_{i} - \mathbf{x}_{i} \mathbf{w}) - \operatorname{diag}(\lambda) = 0$ $\mathbf{w} = (\mathbf{X}'\mathbf{X} + \operatorname{diag}(\lambda)/2)^{-1} \mathbf{X}'\mathbf{y}$

> plug back into L $a(\lambda) = \sum_{i} (v_i \cdot x_i (X'X + diag(\lambda)/2)^{-1} X'y)^2 -$

$$g(\lambda) = \sum_{i} (\mathbf{y}_{i} - \mathbf{x}_{i} (\mathbf{X} + diag(\lambda)/2)^{-1} \mathbf{X}' \mathbf{y})^{2}$$
$$\lambda^{T} (\mathbf{X}' \mathbf{X} + diag(\lambda)/2)^{-1} \mathbf{X}' \mathbf{y}$$

4. Find max $g(\lambda, v)$ s.t. $\lambda_i \ge 0$

try maximizing without constraints

- 5. See if the constraints are binding
- 6. Find *x**

plug λ^* into relation

Lagrange solution properties

Weak duality: The optimal value of the dual problem always gives a lower bound on the optimal value of the primal problem

• **Strong duality:** *If the primal problem is convex,*

• *i.e. f* and *g_i* are convex functions and *h_j* are affine (i.e. linear) functions

and some fine print math is true

then the primal and dual optimal values are equal

What you should know

 The steps to solve (simple) constrained optimization problems

Complementary slackness

- Either $\lambda_i = 0$ and the constraint is *not binding* (not active)
- Or $\lambda_i > 0$ and the constraint is *binding* (active)

Concept of weak and strong duality