Linear Regression
with varying noise
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Regression with varying noise
« Suppose you know the variance of the noise that was

added to each datapoint.
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MLE estimation with varying noise

argmax 10g p(V(s Vaseees Vi | xl,xz,...,xR,(flz,Ozz,...,Oi,w) =
w

Assuming independence
(y )2 among noise and then
l

argmln 2 = plugging in equation for

Gaussian and simplifying.

Setting dLL/dw
()) — equal to zero

R —
(wsuch that 2 % (), 2W)Cl.)
= oF
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This is Weighted Regression

» We are asking to minimize the weighted sum of squares

(yl )2

0—2

argmin E

w

where weight for i'th datapoint is _2
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Non-linear
Regression
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Non-linear Regression

« Suppose you know that y is related to a function of x in such a way
that the predicted values have a non-linear dependence on w, e.qg:
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Non-linear MLE estimation

al’gmaX log p(¥1, Voseeos Vi | X15X5 5000y X, O, W) =
W

Assuming i.i.d. and
. R then plugging in
Arginin 2 (yl. —J WX, )2 = equation for Gaussian
e and simplifying.
w

R — ] Setting dLL/dw
wsuch that E Ji WX =0|= equal to zero
i=1 AW+ X,
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Non-linear MLE estimation

argmaX log p(¥1, Voseeos Vi | X15X5 5000y X, O, W) =
W

Assuming i.i.d. and

& then plugging in
al’gmln 2 (y ;A WX, )2 ﬁ equation for Gaussian
i=
w

and simplifying.
R y, = \/m Setting dLL/dw
wsuch that E ’ L0 = equal to zero
i=1 w+ X

We’ re down the
algebraic toilet
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Non-linear MLE estimation
argmax|1og p(ys ¥ Vg [ %15 Xy, Xg, O, W) =

W ﬁ Assuming i.i.d. and
then plugging in
Common (but not only) approach: w+ x, )2 = equation for Gaussian
Numerical Solutions: and simplifying.

e Line Search
e Simulated Annealing . ﬁ Setting dLL/dw
e Gradient Descent : — equal to zero
e Conjugate Gradient
e Levenberg Marquart
e Newton’s Method

We' re down the
algebraic toilet

Also, special purpose statistical-
optimization-specific tricks such
as E.M. (See Gaussian Mixtures
lecture for introduction)

Copyright © 2001, 2003, Andrew W. Moore Slide 41



Polynomial
Regression
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Polynomial Regression

So far we’ve mainly been dealing with linear regression

X, | X, | Y Cx=[3 2 |v{7 |
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z,=(1,3,2).. y;=7.

yest = Bo+ B Xy + B2 Xo
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\_ /
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Quadratic Regression

It’s trivial to do linear fits of fixed nonlinear basis functions

X, | X, | Y ‘x=[3 12 | v[7 |
327\ 11| |3
113ﬂ COR -
9
1

""ﬁy1=7../

6 14 | y=
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yest = Bot By X+ Br Xot
B3 Xi? + BaXXo + Bs X7

= Y
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\ z=(1, X, Xy, X7 X;X3,X5°)
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4

o1 constant term

em linear terms

N
m

1 (m+2)-choose-2 terms in total = O(m?)

| Each component of a z vector is called a term.
X 1 X1 Each column of the Z matrix is called a term column

3 |2 How many terms in a quadratic regression with m inputs?
/I’ —1 o(m+1)-choose-2 = m(m+1)/2 quadratic terms

Note that solving B=(2"Z2)(Z"y) is thus O(m°)

\ z=(1, X, Xy, X7 X;X3,X5°)
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Qth-degree polynomial Regression

\

X, | X | Y Cx=[3 2 | v7
3 12 |7 \ 1 3
1 |1 |3 ﬂ
4 11 (312 |9 |6 y/

1 /1 (1 |1 |1 3
z=(all products of powers of inputs in which sum of

powers is q or less )

\_
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m inputs, degree Q: how many terms?
= the number of unique terms of the form

1 192 m
X' X5 X wherequ 40,

= the number of unique terms of the form

4o q, Am
1% x" x32..x} wherequ

= the number of lists of non-negative mtegers [G4,91,95--G,,] In Which Zq,

=

= the number of ways of placing Q red disks on a row of squares of length
= (Q+m)-choose-Q

Q+m

®

ﬁ—’
qp=2
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qg,=2 g,=0
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What we have seen

» MLE with Gaussian noise is the same as minimizing
the L, error
» QOther noise models will give other loss functions

 MLE with a Gaussian prior adds a penalty to the L,
error, given Ridge regression

» QOther priors will give different penalties

* One can make nonlinear relations linear by
transforming the features
* Polynomial regression
» Radial Basis Functions (RBF) — will be covered later

» Kernel regression (more on this later)
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