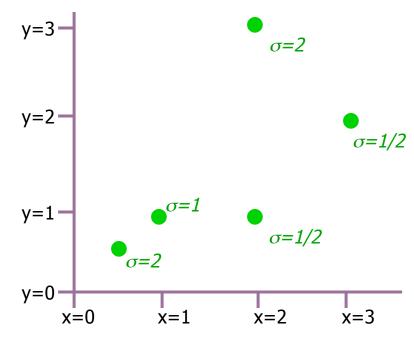
Heteroscedasticity...

Linear Regression with varying noise

Regression with varying noise

 Suppose you know the variance of the noise that was added to each datapoint.

X _i	y _i	σ_i^2
1/2	1/2	4
1	1	1
2	1	1/4
2	3	4
3	2	1/4



Assume
$$y_i \sim N(wx_i, \sigma_i^2)$$

What's the MLE estimate of W?

MLE estimation with varying noise

argmax log
$$p(y_1, y_2,..., y_R | x_1, x_2,..., x_R, \sigma_1^2, \sigma_2^2,..., \sigma_R^2, w) =$$

W

argmin
$$\sum_{i=1}^{R} \frac{(y_i - wx_i)^2}{\sigma_i^2} = \begin{cases} Assuming independence among noise and then plugging in equation for Gaussian and simplifying. \end{cases}$$

Assuming independence

$$\left(w \text{ such that } \sum_{i=1}^{R} \frac{x_i(y_i - wx_i)}{\sigma_i^2} = 0\right) = \frac{\text{Setting dLL/dw}}{\text{equal to zero}}$$

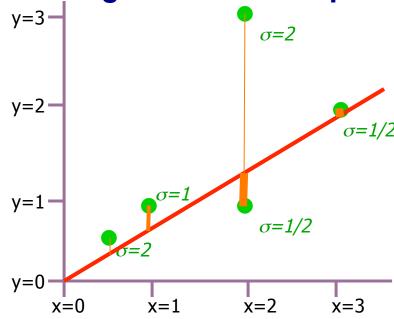
$$\frac{\left(\sum_{i=1}^{R} \frac{x_{i} y_{i}}{\sigma_{i}^{2}}\right)}{\left(\sum_{i=1}^{R} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)}$$

Trivial algebra

This is Weighted Regression

We are asking to minimize the weighted sum of squares

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{R} \frac{(y_i - wx_i)^2}{\sigma_i^2}$$



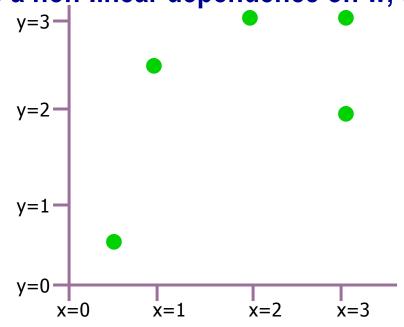
where weight for i'th datapoint is $\frac{1}{\sigma_i^2}$

Non-linear Regression

Non-linear Regression

 Suppose you know that y is related to a function of x in such a way that the predicted values have a non-linear dependence on w, e.g:

Xi	y _i
1/2	1/2
1	2.5
2	3
3	2
3	3



Assume
$$y_i \sim N(\sqrt{w + x_i}, \sigma^2)$$

What's the MLE estimate of W?

Non-linear MLE estimation

$$argmax \log p(y_1, y_2, ..., y_R | x_1, x_2, ..., x_R, \sigma, w) =$$

argmin
$$\sum_{i=1}^{R} (y_i - \sqrt{w + x_i})^2 =$$
Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.

$$\left(w \text{ such that } \sum_{i=1}^{R} \frac{y_i - \sqrt{w + x_i}}{\sqrt{w + x_i}} = 0\right) = \frac{\text{Setting dLL/dw}}{\text{equal to zero}}$$

Non-linear MLE estimation

$$argmax \log p(y_1, y_2, ..., y_R \mid x_1, x_2, ..., x_R, \sigma, w) =$$

W

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{R} \left(y_i - \sqrt{w + x_i} \right)^2 =$$

Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.

$$\left(w \text{ such that } \sum_{i=1}^{R} \frac{y_i - \sqrt{w + x_i}}{\sqrt{w + x_i}} = 0\right) = \frac{\text{Setting dLL/dw}}{\text{equal to zero}}$$

We' re down the algebraic toilet

So guess what we do?

Non-linear MLE estimation

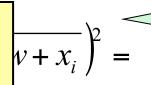
argmax $\log p(y_1, y_2, ..., y_R | x_1, x_2, ..., x_R, \sigma, w) =$

W

Common (but not only) approach: Numerical Solutions:

- Line Search
- Simulated Annealing
- Gradient Descent
- Conjugate Gradient
- Levenberg Marquart
- Newton's Method

Also, special purpose statisticaloptimization-specific tricks such as E.M. (See Gaussian Mixtures lecture for introduction)



Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.

$$\frac{1+x_i}{}=0$$

Setting dLL/dw equal to zero

We're down the algebraic toilet

Polynomial Regression

Polynomial Regression

So far we've mainly been dealing with linear regression

	,	50 far	we've	e ma	aın	ly be	een d	eali	ng
X_1	X_2	Y				X =	3	2	
3	2	7					1	1	
1	1	3					:	:	
1:						•	13	2)	
	Z=	1	3	2		y=	7		•
		1	1	1			3		
		:		:			:		

$$\mathbf{z}_1 = (1,3,2)..$$

$$\mathbf{z}_1 = (1, 3, 2)..$$
 $y_1 = 7..$ $\mathbf{z}_k = (1, x_{k1}, x_{k2})$

$$y_1 = 7.1$$

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}(\mathbf{Z}^{\mathsf{T}}\mathbf{y})$$

$$y^{est} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

 $y_1 = 7..$

Quadratic Regression

It's trivial to do linear fits of fixed nonlinear basis functions

X_1	X_2	Y	~
3	2	7	
1	1	3	
	4	2	7

y=

$$y_1 = 7..$$

$$z=(1, x_1, x_2, x_1^2, x_1x_2, x_2^2)$$

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}(\mathbf{Z}^{\mathsf{T}}\mathbf{y})$$

$$y^{est} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_1 X_2 + \beta_5 X_2^2$$

Each component of a z vector is called a term.

Each column of the Z matrix is called a term column

How many terms in a quadratic regression with *m* inputs?

- •1 constant term
- •m linear terms
- •(m+1)-choose-2 = m(m+1)/2 quadratic terms
- (m+2)-choose-2 terms in total = $O(m^2)$

Note that solving $\beta = (\mathbf{Z}^T \mathbf{Z})^{-1} (\mathbf{Z}^T \mathbf{y})$ is thus $O(m^6)$

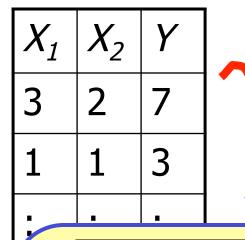
$$z=(1, x_1, x_2, x_1^2, x_1x_2, x_2^2)$$

$$y^{est} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_1 X_2 + \beta_5 X_2^2$$

 X_1

3

Qth-degree polynomial Regression



z=(all products of powers of inputs in which sum of powers is q or less)

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}(\mathbf{Z}^{\mathsf{T}}\mathbf{y})$$

$$y^{est} = \beta_0 + \beta_1 X_1 + \dots$$

m inputs, degree Q: how many terms?

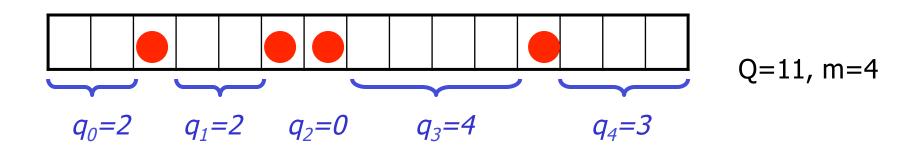
= the number of unique terms of the form

$$x_1^{q_1} x_2^{q_2} ... x_m^{q_m}$$
 where $\sum_{i=1}^m q_i \le Q$

= the number of unique terms of the form

$$1^{q_0} x_1^{q_1} x_2^{q_2} ... x_m^{q_m}$$
 where $\sum_{i=0}^{m} q_i = Q$

- = the number of lists of non-negative integers $[q_0, q_1, q_2, ... q_m]$ in which $\sum q_i = Q$
- = the number of ways of placing Q red disks on a row of squares of length Q+m = (Q+m)-choose-Q



What we have seen

- MLE with Gaussian noise is the same as minimizing the L₂ error
 - Other noise models will give other loss functions
- MLE with a Gaussian prior adds a penalty to the L₂ error, given Ridge regression
 - Other priors will give different penalties
- One can make nonlinear relations linear by transforming the features
 - Polynomial regression
 - Radial Basis Functions (RBF) will be covered later
 - Kernel regression (more on this later)