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Linear Regression 
with varying noise 

Heteroscedasticity
... 
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Regression with varying noise 
•  Suppose you know the variance of the noise that was 

added to each datapoint. 
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MLE estimation with varying noise 
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Assuming independence 
among noise and then 

plugging in equation for 
Gaussian and simplifying. 

Setting dLL/dw 
equal to zero 

Trivial algebra 
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This is Weighted Regression 

•  We are asking to minimize the weighted sum of squares 
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Non-linear 
Regression 
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Non-linear Regression 
•  Suppose you know that y is related to a function of x in such a way 

that the predicted values have a non-linear dependence on w, e.g: 
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Non-linear MLE estimation 
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Assuming i.i.d. and 
then plugging in 

equation for Gaussian 
and simplifying. 

Setting dLL/dw 
equal to zero 
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Non-linear MLE estimation 
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Assuming i.i.d. and 
then plugging in 

equation for Gaussian 
and simplifying. 

Setting dLL/dw 
equal to zero 

We’re down the 
algebraic toilet 

So guess w
hat 

we do? 
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Non-linear MLE estimation 
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying. 

Setting dLL/dw 
equal to zero 

We’re down the 
algebraic toilet 

So guess w
hat 

we do? 

Common (but not only) approach: 
Numerical Solutions: 
•  Line Search 
•  Simulated Annealing 
•  Gradient Descent 
•  Conjugate Gradient 
•  Levenberg Marquart 
•  Newton’s Method 

Also, special purpose statistical-
optimization-specific tricks such 
as E.M. (See Gaussian Mixtures 
lecture for introduction) 
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Polynomial 
Regression 
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Polynomial Regression 
So far we’ve mainly been dealing with linear regression 
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Quadratic Regression 
It’s trivial to do linear fits of fixed nonlinear basis functions 
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Quadratic Regression It’s trivial to do linear fits of fixed nonlinear basis functions 

X1 X2 Y 
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β=(ZTZ)-1(ZTy) 
 

yest = β0+ β1 x1+ β2 x2+ 
β3 x1

2 + β4 x1x2 + β5 x2
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Each component of a z vector is called a term. 

Each column of the Z matrix is called a term column 

How many terms in a quadratic regression with m inputs? 

• 1 constant term 

• m linear terms 

• (m+1)-choose-2 = m(m+1)/2 quadratic terms 

(m+2)-choose-2 terms in total = O(m2) 

 

Note that solving β=(ZTZ)-1(ZTy) is thus O(m6) 
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Qth-degree polynomial Regression 
X1 X2 Y 
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β1 x1+… 



Slide 47 Copyright © 2001, 2003, Andrew W. Moore 

m inputs, degree Q: how many terms? 
= the number of unique terms of the form 
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= the number of unique terms of the form 

= the number of lists of non-negative integers [q0,q1,q2,..qm] in which Σqi 
= Q 

= the number of ways of placing Q red disks on a row of squares of length 
Q+m       = (Q+m)-choose-Q 

Q=11, m=4 

q0=2 q2=0 q1=2 q3=4 q4=3 
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What we have seen 
•  MLE with Gaussian noise is the same as minimizing 

the L2 error 
•  Other noise models will give other loss functions 

•  MLE with a Gaussian prior adds a penalty to the L2 
error, given Ridge regression 
•  Other priors will give different penalties 

•  One can make nonlinear relations linear by 
transforming the features 
•  Polynomial regression 
•  Radial Basis Functions (RBF) – will be covered later 
•  Kernel regression (more on this later) 
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