Naïve Bayes for Text Classification

adapted by Lyle Ungar from slides by Mitch Marcus, which were adapted from slides by Massimo Poesio which were adapted from slides by Chris Manning :)

Lyle Ungar, University of Pennsylvania
Maximum Likelihood Estimate (MLE)

- **MLE**: The estimate that is most likely to have generated the observed data.
 - E.g., if I see 6 heads and 4 tails, what is the MLE of $P(\text{coin=heads})$?

- Why is MLE good?
- Why is MLE bad?
Example: Is this spam?

From: """" <takworlld@hotmail.com>
Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY!

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook.

Change your life NOW!

===
Click Below to order:
http://www.wholesaledaily.com/sales/nmd.htm
===

How do you know?

Lyle H Ungar, University of Pennsylvania
Classification

◆ Given:
 - A description of an instance, \(x \in X \), where \(X \) is the *instance language* or *instance space*.
 - *Issue*: *how to represent text documents*.
 - A fixed set of categories:
 \[C = \{c_1, c_2, \ldots, c_k\} \]

◆ Determine:
 - The category of \(x \): \(c(x) \in C \), where \(c(x) \) is a *categorization function* whose domain is \(X \) and whose range is \(C \).
 - *We want to know how to build categorization functions ("classifiers").*
A Graphical View of Text Classification

NLP

AI

Graphics

Arch.

Theory
Examples of text categorization

- **SPAM**
 - “spam” / “not spam”

- **TOPICS**
 - “finance” / “sports” / “asia”

- **AUTHOR**
 - “Shakespeare” / “Marlowe” / “Ben Jonson”
 - The Federalist papers
 - Male/female
 - Native language

- **OPINION**
 - “like” / “hate” / “neutral”

- **EMOTION**
 - “angry”/“sad”/“happy”/“disgusted”/…
Bayesian Methods

- Uses *Bayes theorem* to build a *generative model* that approximates how data is produced.
- Uses *prior probability* of each category
 - given *no* information about an item.
- Categorization produces a *posterior probability* distribution over the possible categories given a description of an item.
Bayes’ Rule once more

\[P(C, D) = P(C \mid D)P(D) = P(D \mid C)P(C) \]

\[P(C \mid D) = \frac{P(D \mid C)P(C)}{P(D)} \]
Maximum a posteriori (MAP)

\[c_{MAP} \equiv \arg\max_{c \in C} P(c \mid D) \]

\[= \arg\max_{c \in C} \frac{P(D \mid c)P(c)}{P(D)} \]

\[= \arg\max_{c \in C} P(D \mid c)P(c) \]

As \(P(D) \) is constant
Maximum likelihood

If all hypotheses are a priori equally likely, we only need to consider the $P(D|c)$ term:

$$c_{ML} \equiv \arg\max_{c \in C} P(D | c)$$

Maximum Likelihood Estimate ("MLE")
Naive Bayes Classifiers

Task: Classify a new instance x based on a tuple of attribute values $x = (x_1 \ldots x_n)$ into one of the classes $c_j \in \mathbb{C}$

$$c_{MAP} = \arg\max_{c \in \mathbb{C}} P(c \mid x_1, x_2, \ldots, x_n)$$

$$= \arg\max_{c \in \mathbb{C}} \frac{P(x_1, x_2, \ldots, x_n \mid c)P(c)}{P(x_1, x_2, \ldots, x_n)}$$

$$= \arg\max_{c \in \mathbb{C}} P(x_1, x_2, \ldots, x_n \mid c)P(c)$$

Sorry: n here is what we call p – the number of predictors. For now we’re thinking of it as a sequence of n words in a document.
Naïve Bayes Classifier: Assumption

- \(P(c_j) \)
 - Can be estimated from the frequency of classes in the training examples.

- \(P(x_1, x_2, \ldots, x_n | c_j) \)
 - \(O(|X|^n \cdot |C|) \) parameters
 - Could only be estimated if a very, very large number of training examples was available.

Naïve Bayes assumes Conditional Independence:

- Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities \(P(x_i | c_j) \).
The Naïve Bayes Classifier

Conditional Independence Assumption: features are independent of each other given the class:

\[P(X_1, \ldots, X_5 \mid C) = P(X_1 \mid C) \cdot P(X_2 \mid C) \cdot \cdots \cdot P(X_5 \mid C) \]

This model is appropriate for binary variables
- Similar models work more generally ("Belief Networks").
First attempt: maximum likelihood estimates

- simply use the frequencies in the data

\[
\hat{P}(c_j) = \frac{N(C = c_j)}{N}
\]

\[
\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}
\]
Problem with Max Likelihood

What if we have seen no training cases where patient had no flu and muscle aches?

\[P(X_1, \ldots, X_5 \mid C) = P(X_1 \mid C) \cdot P(X_2 \mid C) \cdot \cdots \cdot P(X_5 \mid C) \]

\[\hat{P}(X_5 = t \mid C = \text{flu}) = \frac{N(X_5 = t, C = \text{flu})}{N(C = \text{flu})} = 0 \]

Zero probabilities cannot be conditioned away, no matter the other evidence!

\[\ell = \arg\max_c \hat{P}(c) \prod_i \hat{P}(x_i \mid c) \]
Smoothing to Avoid Overfitting

\[\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + v} \]

- Somewhat more subtle version

\[\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + m p_{i,k}}{N(C = c_j) + m} \]

- N(C=c_j) = # of docs in class c_j
- N(X_i=x_i, C=c_j) = # of docs in class c_j with word position X_i having value word x_i
- Here v would be the vocabulary size
- If X_i is just true or false, then k is 2.
- \(p_{i,k} \) is marginalized over all classes, how often feature X_i takes on each of it's k possible values.
Using Naive Bayes Classifiers to Classify Text: Bag of Words

- General model: Features are positions in the text (X_1 is first word, X_2 is second word, ...), values are words in the vocabulary

\[
c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_i P(x_i | c_j)
\]

\[
= \arg\max_{c_j \in C} P(c_j) P(x_1 = \text{"our"} | c_j) \cdots P(x_n = \text{"text"} | c_j)
\]

- Too many possibilities, so assume that classification is independent of the positions of the words
 - Result is bag of words model
 - Just use the counts of words, or even a variable for each word: is it in the document or not?
Smoothing to Avoid Overfitting — Bag of words

\[\hat{P}(x_i \mid c_j) = \frac{N(X_i = \text{true}, C = c_j) + 1}{N(C = c_j) + v} \]

◆ Somewhat more subtle version

\[\hat{P}(x_i \mid c_j) = \frac{N(X_i = \text{true}, C = c_j) + m p_i}{N(C = c_j) + m} \]

Now
- \(N(C = c_j) = \) # of docs in class \(c_j \)
- \(N(X_i = \text{true}, C = c_j) = \) # of docs in class \(c_j \) containing word \(x_i \)
- \(v = \) vocabulary size
- \(p_i \) is the probability that word \(i \) is present, ignoring class labels

of values of \(X_i \)
overall fraction of docs containing \(x_i \)
extent of “smoothing”
Naïve Bayes: Learning

- From training corpus, determine *Vocabulary*

- Estimate $P(c_j)$ and $P(x_k \mid c_j)$
 - For each c_j in C do

 $docs_j \leftarrow$ documents labeled with class c_j

 $P(c_j) \leftarrow \frac{|docs_j|}{|\text{total # documents}|}$

- For each word x_k in *Vocabulary*

 $n_k \leftarrow$ number of occurrences of x_k in all $docs_j$

 $P(x_k \mid c_j) \leftarrow \frac{n_k + 1}{|docs_j| + |\text{Vocabulary}|}$

 Simple “Laplace” smoothing
Naïve Bayes: Classifying

For all words x_i in current document

Return c_{NB}, where

$$c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_{i \in \text{document}} P(x_i | c_j)$$

What is the implicit assumption hidden in this?
Naïve Bayes for text

- The “correct” model would have a probability for each word observed and one for each word not observed.
 - Naïve Bayes for text assumes that there is no information in words that are not observed – since most words are very rare, their probability of not being seen is close to 1.
Naive Bayes is not so dumb

- A good dependable baseline for text classification
 - But not the best!
- Optimal if the Independence Assumptions hold:
 - If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- Very Fast:
 - Learn with one pass over the data;
 - Testing linear in the number of attributes, and document collection size
- Low Storage requirements
Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.

Since \(\log(xy) = \log(x) + \log(y) \), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.

Class with highest final un-normalized log probability score is still the most probable.

\[
c_{NB} = \arg\max_{c_j \in C} \log P(c_j) + \sum_{i \in \text{positions}} \log P(x_i \mid c_j)
\]
More Facts About Bayes Classifiers

- Bayes Classifiers can be built with real-valued inputs*
 - Or many other distributions
- Bayes Classifiers don’t try to be maximally discriminative
 - They merely try to honestly model what’s going on*
- Zero probabilities give stupid results
- Naïve Bayes is wonderfully cheap
 - And handles 1,000,000 features cheerfully!

*See future Lectures and homework
Naïve Bayes – MLE

<table>
<thead>
<tr>
<th>word</th>
<th>topic</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>sports</td>
<td>0</td>
</tr>
<tr>
<td>ball</td>
<td>sports</td>
<td>1</td>
</tr>
<tr>
<td>carrot</td>
<td>sports</td>
<td>0</td>
</tr>
<tr>
<td>game</td>
<td>sports</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>sports</td>
<td>2</td>
</tr>
<tr>
<td>saw</td>
<td>sports</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>sports</td>
<td>3</td>
</tr>
</tbody>
</table>

Assume 5 sports documents

Counts are number of documents on the sports topic containing each word

\[
P(a|\text{sports}) = \frac{0}{5}
\]

\[
P(\text{ball}|\text{sports}) = \frac{1}{5}
\]
Naïve Bayes – prior (noninformative)

<table>
<thead>
<tr>
<th>Word</th>
<th>topic</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>ball</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>carrot</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>game</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>I</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>saw</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>the</td>
<td>sports</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Assume 5 sports documents

Adding a count of 1 (instead of 0.5 as done here) is called “Laplace smoothing”.

Pseudo-counts to be added to the observed counts

We did 0.5 here; before in the notes it was 1; either is fine
Naïve Bayes – posterior (MAP)

<table>
<thead>
<tr>
<th>Word</th>
<th>topic</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>ball</td>
<td>sports</td>
<td>1.5</td>
</tr>
<tr>
<td>carrot</td>
<td>sports</td>
<td>0.5</td>
</tr>
<tr>
<td>game</td>
<td>sports</td>
<td>2.5</td>
</tr>
<tr>
<td>l</td>
<td>sports</td>
<td>2.5</td>
</tr>
<tr>
<td>saw</td>
<td>sports</td>
<td>2.5</td>
</tr>
<tr>
<td>the</td>
<td>sports</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Assume 5 sports documents,

\[
P(\text{word,topic}) = \frac{N(\text{word,topic}) + 0.5}{N(\text{topic}) + 0.5k}
\]

Pseudo count of docs on topic=sports is \((5 + 0.5 \times 7 = 8.5)\)

\[
P(\text{a|sports}) = \frac{0.5}{8.5} \quad \text{posterior}
\]

\[
P(\text{ball|sports}) = \frac{1.5}{8.5}
\]
Naïve Bayes – prior overall

<table>
<thead>
<tr>
<th>word</th>
<th>topic</th>
<th>count</th>
<th>topic</th>
<th>count</th>
<th>p(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>sports</td>
<td>0</td>
<td>politics</td>
<td>2</td>
<td>2/11</td>
</tr>
<tr>
<td>ball</td>
<td>sports</td>
<td>1</td>
<td>politics</td>
<td>0</td>
<td>1/11</td>
</tr>
<tr>
<td>carrot</td>
<td>sports</td>
<td>0</td>
<td>politics</td>
<td>0</td>
<td>0/11</td>
</tr>
<tr>
<td>game</td>
<td>sports</td>
<td>2</td>
<td>politics</td>
<td>1</td>
<td>3/11</td>
</tr>
<tr>
<td>l</td>
<td>sports</td>
<td>2</td>
<td>politics</td>
<td>5</td>
<td>7/11</td>
</tr>
<tr>
<td>saw</td>
<td>sports</td>
<td>2</td>
<td>politics</td>
<td>1</td>
<td>3/11</td>
</tr>
<tr>
<td>the</td>
<td>sports</td>
<td>3</td>
<td>politics</td>
<td>5</td>
<td>8/11</td>
</tr>
</tbody>
</table>

Assume 5 sports docs and 6 politics docs 11 total docs
Naïve Bayes – posterior (MAP)

\[P(a|\text{sports}) = \frac{0 + 4 \times (2/11)}{5 + 4} = 0.08 \]
\[P(\text{ball}|\text{sports}) = \frac{1 + 4 \times (1/11)}{5 + 4} = 0.15 \]

...

\[P(\text{word,topic}) = \frac{N(\text{word,topic}) + 4}{N(\text{topic}) + 4} P_{\text{word}} \]

Here we arbitrarily pick \(m=4 \) as the strength of our prior
What you should know

◆ Applications of document classification
 ● Spam detection, topic prediction, email routing, author ID, sentiment analysis

◆ Naïve Bayes
 ● As MAP estimator (uses prior)
 ■ Contrast MLE
 ■ Smoothing
 ● For document classification
 ■ Use bag of words
 ■ Could use richer feature set