Natural Language Processing (NLP)

Bag of words
Sentiment analysis
- Product reviews, Yelp
Naïve Bayes
LDA
Deep learning

NLP pipeline

- ◆ Tokenization
 - "Yesterday, I didn't walk 3.14 miles to Penn Engineering."
 - Yesterday , I didn't walk 3.14 miles to Penn Engineering .
- Named Entity recognition
 - Penn_Engineering
- ◆ Bag of words vs. sequential models
- ◆ Optionally: word embedding

Naïve Bayes for Text Classification

adapted by Lyle Ungar from slides by Mitch Marcus, which were adapted from slides by Massimo Poesio, which were adapted from slides by Chris Manning:)

Example: Is this spam?

From: "" <takworlld@hotmail.com>

Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY!

There is no need to spend hundreds or even thousands for similar courses

How do you know?

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook.

Change your life NOW!

Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

Classification

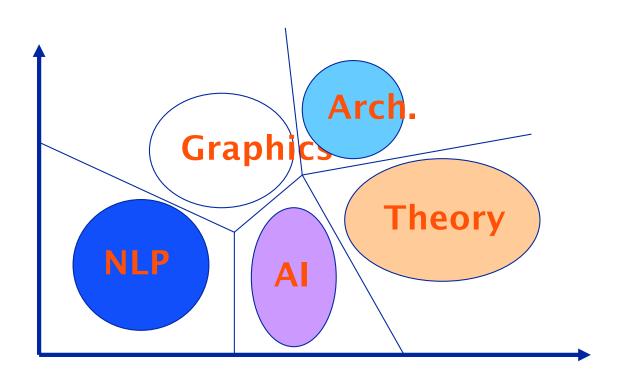
Given

- A vector, $x \in X$ describing an instance
 - Issue: how to represent text documents as vectors?
- A fixed set of categories: $C = \{c_1, c_2, ..., c_k\}$

◆ Determine

• An optimal classifier c(x): $X \rightarrow C$

A Graphical View of Text Classification



Examples of text categorization

◆ Spam

"spam" / "not spam"

♦ Topics

"finance" / "sports" / "asia"

Author

- "Shakespeare" / "Marlowe" / "Ben Jonson"
- The Federalist papers author
- Male/female
- Native language: English/Chinese,...

Opinion

"like" / "hate" / "neutral"

◆ Emotion

"angry"/"sad"/"happy"/"disgusted"/...

Conditional models

 $p(Y=y|X=x; w) \sim exp(-||y-x\cdot w||^2/2\sigma^2)$ linear regression

$$p(Y=y|X=x; w) \sim 1/(1+exp(-x\cdot w))$$
 logistic regression

- ◆ Or derive from full ('generative') model
 - p(y|x) = p(x,y)/p(x)
 - Making some assumptions about the distribution of (x,y)

Bayesian Methods

- ◆ Use Bayes theorem to build a generative model that approximates how data are produced
- Use prior probability of each category
- ◆ Produce a posterior probability distribution over the possible categories given a description of an item.

Bayes' Rule once again

$$P(C \mid D) = \frac{P(D \mid C)P(C)}{P(D)}$$

Maximum a posteriori (MAP)

$$c_{MAP} \equiv \underset{c \in C}{\operatorname{argmax}} P(c \mid D)$$

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(D \mid c)P(c)}{P(D)}$$

$$= \underset{c \in C}{\operatorname{argmax}} P(D \mid c) P(c)$$

As P(D) is constant

Maximum likelihood

If all hypotheses are *a priori* equally likely, we only need to consider the P(D|c) term:

$$c_{ML} \equiv \underset{c \in C}{\operatorname{argmax}} P(D \mid c)$$

Maximum Likelihood Estimate ("MLE")

Naive Bayes Classifiers

Task: Classify a new instance \underline{x} based on a tuple of attribute values $\mathbf{x} = (\mathbf{x}_1...\mathbf{x}_p)$ into one of the classes $c_j \in C$

$$c_{MAP} = argmax_c \ p(c|x_1, ...x_p)$$

$$= argmax_c \ p(x_1, ...x_p|c) \ p(c) \ / \ p(x_1, ...x_p)$$

$$= argmax_c \ p(x_1, ...x_p|c) \ p(c)$$

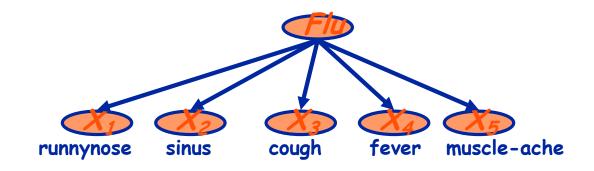
Naïve Bayes Classifier: Assumption

- $ightharpoonup P(c_j)$
 - Estimate from the training data.
- $\bullet P(x_1, x_2, ..., x_p | c_j)$
 - $O(|X|^{p_{\bullet}}|C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.

Naïve Bayes assumes Conditional Independence:

Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(x_i|c_j)$.

The Naïve Bayes Classifier

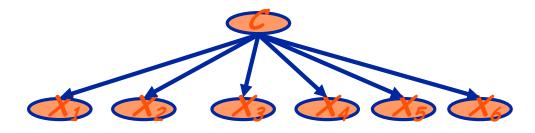


◆ Conditional Independence Assumption: Features are independent of each other given the class:

$$P(X_1,...,X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \cdots \bullet P(X_5 \mid C)$$

- ◆ This model is appropriate for binary variables
 - Similar models work more generally ("Belief Networks")

Learning the Model

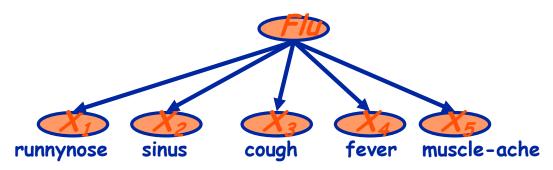


- ◆ First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

Problem with Max Likelihood



What if we have seen no training cases where patient had no flu and muscle aches?

$$P(X_1,...,X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \cdots \bullet P(X_5 \mid C)$$

$$\hat{P}(X_5 = t \mid C = flu) = \frac{N(X_5 = t, C = flu)}{N(C = flu)} = 0$$
The Example 2 Zero probabilities cannot be conditioned away, no matter the

other evidence!

$$\ell = \operatorname{arg\,max}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

MLE Estimate

$$P(x_i|c_i) = N(X_i=true, C=c_i) / N(C=c_i)$$

Where

 $N(C=c_j)$ = # of docs in class c_j $N(X_i=true, C=c_j)$ = # of docs in class c_j containing word x_i ,

MAP Estimate

Add one document to each class with a single count of each word

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = true, C = c_j) + 1}{N(C = c_j) + v}$$

Somewhat more subtle version

overall fraction of <u>docs conta</u>ining *x_i*

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = true, C = c_j) + mp_i}{N(C = c_j) + m}$$

Now

 $N(C=c_j)$ = # of docs in class c_j $N(X_i=true, C=c_j)$ = # of docs in class c_j containing word x_i ,

v = vocabular v size

 p_i = probability that word i is present in a document, ignoring class labels

extent of "smoothing"

Naïve Bayes: Learning

- **♦** From training corpus, determine *Vocabulary*
- ♦ Estimate $P(c_i)$ and $P(x_k | c_j)$
 - For each c_i in C do

 $docs_j \leftarrow documents labeled with class <math>c_j$

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

• For each word x_k in *Vocabulary*

 $n_k \leftarrow$ number of occurrences of x_k in all $docs_i$

$$P(x_k \mid c_j) \leftarrow \frac{n_k + 1}{|docs_j| + |Vocabulary|}$$
 "Laplace" smoothing

Naïve Bayes: Classifying

- **◆** For all words x_i in current document
- lacktriangle Return c_{NB} , where

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in documant} P(x_{i} \mid c_{j})$$

What is the implicit assumption hidden in this?

Naïve Bayes for text

- ◆ The "correct" model would have a probability for each word observed and one for each word not observed.
 - Naïve Bayes for text assumes that there is no information in words that are not observed – since most words are very rare, their probability of *not* being seen is close to 1.

Naive Bayes is not so dumb

- **◆**A good baseline for text classification
- **◆Optimal if the independence assumptions hold:**
- **♦** Very fast:
 - Learns with one pass over the data
 - Testing linear in the number of attributes and of documents
 - Low storage requirements

Technical Detail: Underflow

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- ◆ Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j})$$

More Facts About Bayes Classifiers

- ◆ Bayes Classifiers can be built with real-valued inputs
 - Or many other distributions
- Bayes Classifiers don't try to be maximally discriminative
 - They merely try to honestly model what's going on
- ◆ Zero probabilities give stupid results
- ◆ Naïve Bayes is wonderfully cheap
 - And handles 1,000,000 features cheerfully!

Naïve Bayes – MLE

word	topic	coun			
a	sports	0			
ball	sports	1			
carrot	sports	0			
game	sports	2			
1	sports	2			
saw	sports	2			
the	sports	3			
$P(a \mid sports) = 0/5$					
P(ball sports) = 1/5					

Assume 5 sports documents

Counts are number of documents on the sports topic containing each word

Naïve Bayes – prior (noninformative)

Word	topic	count	Assume 5 sports documents
a	sports	0.5	
ball	sports	0.5	Adding a count of 0.5 beta(0.5,0.5) is a Jeffreys prior.
carrot	sports	0.5	beta(0.5,0.5) is a Jeffreys prior.
game	sports	0.5	A count of 1
1	sports	0.5	beta(1,1) is Laplace smoothing.
saw	sports	0.5	
the	sports	0.5	

Pseudo-counts to be added to the observed counts We did 0.5 here; before in the notes it was 1; either is fine

Naïve Bayes – posterior (MAP)

Word	topic	count			
а	sports	0.5			
ball	sports	1.5			
carrot	sports	0.5			
game	sports	2.5			
	sports	2.5			
saw	sports	2.5			
the	sports	3.5			
P(a sports) = 0.5/8.5					
P(ball	sports) =	= 1.5/8.5			

Assume 5 sports documents,

 $P(word|topic) = \frac{N(word,topic)+0.5}{N(topic) + 0.5 k}$

Pseudo count of docs on topic=sports is (5 + 0.5*7=8.5)

posterior

But words have different 'base rates'

word	topic	count	topic	count	p(word)
a	sports	0	politics	2	2/11
ball	sports	1	politics	0	1/11
carrot	sports	0	politics	0	0/11
game	sports	2	politics	1	3/11
	sports	2	politics	5	7/11
saw	sports	2	politics	1	3/11
the	sports	3	politics	5	8/11
Assur	ne 5 sp	orts docs	and 6 pc	olitics docs	11 total docs

Naïve Bayes – posterior (MAP)

$$P(word,topic) = \frac{N(word,topic) + m P_{word}}{N(topic) + m}$$

Arbitrarily pick m=4 as the strength of our prior

P(a | sports) =
$$(0 + 4*(2/11))/(5 + 4)$$
 = 0.08
P(ball | sports) = $(1 + 4*(1/11))/(5 + 4)$ = 0.15

. . .

What you should know

- Applications of document classification
 - Sentiment analysis, topic prediction, email routing, author ID,
 Naïve Bayes
 - As MAP estimator (uses prior for smoothing)
 - Contrast MLE
 - For document classification
 - Use bag of words
 - Could use richer feature set