
Netflix
Lyle Ungar

University of Pennsylvania
Learning objectives
Defining an ML problem:
model, loss function…

Recommender Systems
Matrix factorization

The training data
u Training data

l 100,000,000 ratings
l 480,000 users
l 18,000 movies

u Data is sparse
l 100,000,000/(18,000*480,000) = 0.01
l but it is worse than that!

$1,000,000 prize money
for first team to beat the
baseline by 10%

Validation and Test data sets
u Validation (“Quiz”) set

l 1.4 million ratings used to calculate leaderboard
u Test set

l 1.4 million ratings used to determine winners

What models to use?
u An ensemble of many models
u Main methods

l K-nearest neighbors
l Matrix reconstruction

K-NN
r̂ ui = ∑j∈N(i;u)ruj / k
rui = rating by user u for movie I

N(i;u) = the set of k (typically 20–50) movies for which
user u has provided a rating that are most similar to movie i

How do you measure movie similarity?

How to improve?

Soft K-NN
r̂ ui = ∑j∈N(i;u)sijruj/∑j∈N(i;u) sij

rui = rating by user u for movie i
sij = similarity between movies i and j

K-NN – subtract off a baseline
r̂ ui= bui+∑j∈N(i;u)sij(ruj−buj)/∑j∈N(i;u)sij

rui = rating by user u for movie i
sij = similarity between movies i and j

bui = baseline rating - e.g. mean rating of user u or movie i

This doesn’t account for
u Similar movies are redundant

l e.g. a series like Star Wars or Avengers
u Movies may be more or less similar

l If less similar, then ‘shrink’ more to the baseline

K-NN with regression instead of similarity
r̂ ui= bui+∑j∈N(i;u)wij(ruj−buj)

rui = rating by user u for movie i
wij = weight learned by regression
bui = baseline rating - e.g. mean rating of user u or movie i

K-NN with regression
r̂ ui= bui+∑j∈N(i;u)wij(ruj−buj)

rui = rating by user u for movie i
wij = weight learned by regression
bui = baseline rating - e.g. mean rating of user u or movie i

Find wij by seeing what weights on similar movies j would have best
estimated the rating rvi on the target movie i by people v other than the
user u.

argminw[∑v≠u(rvi−r̂ vi)2] = argminw[∑v≠u(rvi−bvi−∑j∈N(i;v)wij(rvj−bvj))2]

This can be expensive
u Need to compare every user against every other

user to find the most similar users
l Based on movies in common

u How to speed up?

Matrix factorization
u Factor rating matrix R
u R̂ =PQT or r̂ui=puqi

T

l P is number of users * number of hidden factors
l Q is number of movies * number of hidden factors
l Number of hidden factors, k = 60

u P looks like principal component scores/coefficients
u Q looks like loadings

Matrix factorization
∑(u,i)∈K[(rui−puqT

i)2 + λ(||pu||2 2 +||qi||2 2)]
reconstruction error ridge penalty

where the summation is over the set K of (u,i) pairs for
which rui are known.
u Solve using alternating least squares

l first fix P and solve for Q using Ridge regression
l then fix Q and solve for P using Ridge regression
l repeat.

Matrix factorization
u Further regularize by forcing the elements

of P and Q to be non-negative
l “Non-Negative Matrix Factorization (NNMF)

u And do locally weighted matrix factorization
l ∑(u,i)∈K[sij(rui−puqT

i)2+λ(|pu|2+|qi|2)]

Conclusions
u Everything we’ve done can be extended to only

use the loss over the observations we have.
u Ensemble all the methods
u Follow-up competition was cancelled because…
u Lots of other features can be used

l what?

