# Machine Learning Overview

Lyle Ungar

## Kinds of machine learning

- Supervised
- Unsupervised
- Semi-supervised
- Reinforcement
- Flavors
  - Regression vs. classification
  - Parametric vs. nonparametric
  - Active vs. passive
  - Single task vs. multi-task

## Supervised learning

- **◆** Non-parametric
- Parametric
  - Minimize error
  - Maximize likelihood (MLE/MAP)
- ◆ 'Semiparametric'

**Bias-Variance tradeoff** 

### Supervised learning

- ◆ Non-parametric
  - K-NN, Decision Trees, Random Forests, Boosted Trees
- ◆ Parametric
  - Regression: linear, logistic, LMS
  - Large margin: SVM, perceptron
- **◆ Semiparametric** 
  - neural nets

### Loss functions

- ◆ Real y
  - L<sub>2</sub>
  - L<sub>1</sub>
- Categorical y
  - L<sub>0</sub>
  - Hinge
  - Log loss:  $\Sigma_i \log(p_i)$ 
    - p<sub>i</sub> = the estimated probability of the correct answer
    - minimizes KL(y|p)

### Which loss function for classification?

- ♦ L₂ vs log loss
  - Which is preferred? Why?
- ◆ L<sub>0</sub> vs hinge vs log loss
  - Which is most "hard"?
  - Which is most "soft"?
  - Which fits a probability model?

# Unsupervised learning

- Projection vs. clustering
- Minimize reconstruction error
  - PCA
  - K-means
  - Auto-encoders

#### Maximize likelihood

- Gaussian Mixture Model (GMM)
- LDA
- Belief nets, including Naïve Bayes

### When to mean center for PCA?

- Product purchases (e.g. amazon)
- **◆** Word counts (e.g. twitter)
- **◆ Pixels (e.g. brain scans)**



### When (not) to rescale

- ◆ OLS Scale invariant?
- ◆ Ridge, elastic net
- ◆ K-NN
- RBF
- **◆ PCR**
- ◆ SVM
- **◆** Convolutional neural net
- **◆** Random forest, boosted trees

# Method Selection: How big is n vs p?

- ♠ p >> n
- ♦ n >> p
- ♠ n ~ p

### Method Selection: How big is n vs p?

- ◆ p >> n: use dimensionality reduction
  - or do extreme feature selection (RIC)
  - Then often just fit a linear model
  - Try semi-supervised learning
- ♦ n >> p: fit a flexible model
  - random forest, NNet, boosted trees
  - or look for more features
- $\bullet$  *n* ~ *p*: consider feature selection and dim. reduction
  - Elastic net?

## What do you know about your problem?

- ◆ Are features highly correlated or almost independent?
- Roughly linear or highly nonlinear?
- ◆ Is noise Gaussian?
- **◆** Conditional independence or causal structure?
- Constraints?
- ◆ Fixed size or variable length feature set?
- ◆ What is your real loss function?

## What method to use? Why?

| Data           | #y classes | s n     | p      |
|----------------|------------|---------|--------|
| ◆ MRI          | 2          | 100     | 10,000 |
| ◆ Image        | 1,000      | 500,000 | 600    |
| ◆ Disease      | 3          | 1,000   | 50     |
| ◆ Disease      | 10         | 1,000   | 200    |
| ◆ Text in docs | 2          | 40,000  | 40,000 |
| ◆ Student app  | s 2        | 5,000   | 500    |