Machine Learning Overview Part 2 Lyle Ungar

- When is EM used?
- Expectation step does what?
- Maximization step does what?
- EM is a kind of gradient descent in what?

When is EM used?

- Unobservable latent variables (GMM, HMM, LDA)
- Missing data

Expectation step does what?

- E(z) expected value of the missing data
- Maximization step does what?
 - Finds the MLE or MAP of the model parameters
- EM is a kind of gradient descent in what?
 - likelihood

• For each document,

- Choose the topic distribution $\theta \sim \text{Dirichlet}(\alpha)$
- For each of the N words w_n:
 - Choose a topic z ~ Multinomial(θ)
 - Then choose a word $w_n \sim \text{Multinomial}(\beta_z)$
 - Where each topic has a different parameter vector β for the words

- Generative or discriminative?
- What is observed?
- What is hidden?
- What are the parameters?

- What does the E step estimate?
- What does the M step estimate?

RL: model-based vs. model free

Model-based

- MDP: p(s_{t+1}|s_t,a_t)
- Model-free
 - Q-learning

Model-based RL

Policy iteration

• Policy evaluation: Bellman's equation

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

• Policy improvement

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Model-free RL

♦ Q-learning

Choose A from S using policy derived from Q (e.g., ϵ -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ ♦ What are

- Q(s,a)
- α, γ
- ε-greedy?

Is the above on-policy or off-policy?

Update Current V or Q

Look only one step ahead

• Q learning = TD(0)

Do randomized search

- Monte Carlo
- Much faster than trying to do exhaustive search
- alphaGo approach

Auto-encoders

- What is the most widely used auto-encoder?
- What loss function do auto-encoders minimize?
- What prevents an auto-encoder from learning the identity mapping?
- When do you use a linear vs. a nonlinear autoencoder?

Auto-encoders

- What is the most widely used auto-encoder?
 - PCA
- What loss function do auto-encoders minimize?
 - Reconstruction error (always L2 in this course)
- What prevents an auto-encoder from learning the identity mapping?
 - Limited number of components, noise, sparsity penalties ...
- When do you use a linear vs. a nonlinear autoencoder?

D-separation

• X and Y are d-separated if there is no active path between them.

Active path

Ten rules of Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters the "stop" symbol: \longrightarrow

If there are no active paths from X to Y when $\{Z_1, \ldots, Z_k\}$ are shaded, then