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Probability Review
Lyle Ungar

MLE/MAP
Bernoulli and beta distributions

Probability density functions
Gaussians
Expected value

I’m comfortable working 
with probability density 
functions
A) yes
B) no
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• Lectures are recorded 
• but it’s much better to come to class

• Piazza rocks!
• Questions? (chat window)

I know the difference 
between MLE and MAP
A) yes
B) no



MLE/MAP
• MLE maximizes what?
• MAP maximizes what?
• When is MLE the same as MAP?
• We will almost always use MAP. Why?

Copyright Andrew Moore
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Probability Densities 
(PDFs)
Originally by 

Andrew W. Moore
Note to other teachers and users of 

these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 

to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 

your own lecture, please include this 
message, or the following link to the 

source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 

Comments and corrections gratefully 
received. 

Heavily 
edited by 
Lyle Ungar

http://www.cs.cmu.edu/~awm/tutorials


Probability Densities in ML
• Why we should care
• Notation and fundamentals of continuous PDFs
• Multivariate continuous PDFs
• Expected value, variance, covariance



Why we should care
• Real numbers occur most real data 

• Can’t always quantize them
• Parameters in models are real valued
• You’ll need to intimately understand PDFs for

• kernel methods, 
• clustering with mixture models
• time series, HMMs
• proofs about regression



A PDF of American Ages in 2000



A PDF of American Ages in 2000
Let X be a continuous random 

variable.
If p(x) is a Probability Density 

Function for X then…( ) ò
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Properties of PDFs

That means…
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Properties of PDFs
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?
If 

p(5.31) = 0.06 and p(5.92) = 0.03
then 

when a value X is sampled from the distribution, you are 
2 times as likely to find that X is “very close to” 5.31 
than that X is “very close to” 5.92.
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Talking to your stomach
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?
If 

then 
when a value X is sampled from the distribution, you are 
a times as likely to find that X is “very close to” 5.31
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?
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Yet another way to view a PDF
A recipe for sampling a random 

age.
1. Generate a random dot 

from the rectangle 
surrounding the PDF curve. 
Call the dot (age, d)

2. If d < p(age) stop and 
return age

3. Else try again: go to Step 1.



Test your understanding
• True or False:
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• True or False:



Expectations
E[X] = the expected value of 
random variable X
= the average value we’d see 
if we took a very large number 
of random samples of X
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Expectations
E[X] = the expected value of 
random variable X
= the average value we’d see 
if we took a very large number 
of random samples of X
= the first moment of the 
shape formed by the axes and 
the blue curve
= the best value to choose if 
you must guess an unknown 
person’s age and you’ll be 
fined the square of your error

E[age]=35.897



Expectation of a function
µ=E[f(X)] = the expected 
value of f(x) where x is drawn 
from X’s distribution. 
= the average value we’d see 
if we took a very large number 
of random samples of f(X)
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Note that in general:
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Variance
s2 = Var[X] = the 
expected squared 
difference between 
x and E[X] ò

¥
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= amount you’d expect to lose 
if you must guess an unknown 
person’s age and you’ll be 
fined the square of your error, 
and assuming you play 
optimally

02.498]age[Var =



Standard Deviation
s2 = Var[X] = the 
expected squared 

difference between 
x and E[X] 
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= amount you’d expect to lose 
if you must guess an unknown 
person’s age and you’ll be 
fined the square of your error, 
and assuming you play 
optimally
s = Standard Deviation = 
“typical” deviation of X from 
its mean
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In two dimensions

p(x,y) = probability density of 
random variables (X,Y) at 

location (x,y)



In two 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 

space…
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In two 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 

space…
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P( 20<mpg<30 and
2500<weight<3000) =

area under the 2-d surface within 
the red rectangle



In two 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 

space…
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P( [(mpg-25)/10]2 + 
[(weight-3300)/1500]2

< 1 ) =

area under the 2-d surface within 
the red oval



In two 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 

space…
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Take the special case of region R = “everywhere”.
Remember that with probability 1, (X,Y) will be drawn from “somewhere”. 
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In two 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 

space…
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In m 
dimensions

Let (X1,X2,…Xm) be an n-tuple of continuous 
random variables, and let R be some region 

of Rm …
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Independence

If X and Y are independent 
then knowing the value of X 

does not help predict the 
value of Y

)()(),( :yx, iff ypxpyxpYX ="^

mpg,weight NOT 
independent



Independence

If X and Y are independent 
then knowing the value of X 

does not help predict the 
value of Y

)()(),( :yx, iff ypxpyxpYX ="^

the contours say that 
acceleration and weight are 

independent



Multivariate Expectation
xxxXμX ò== dpE )(][

E[mpg,weight] =
(24.5,2600)

The centroid of the 
cloud



Multivariate Expectation
xxxX ò= dpffE )()()]([



Test your understanding
? ][][][ does ever) (if When :Question YEXEYXE +=+

A) All the time?
B) Only when X and Y are independent?
C) It can fail even if X and Y are independent?



Bivariate Expectation
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Bivariate Covariance
)])([(],Cov[ yxxy YXEYX µµs --==
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Bivariate Covariance
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Covariance Intuition

E[mpg,weight] =
(24.5,2600)

8mpg =s8mpg =s

700weight =s

700weight =s



Covariance Intuition

E[mpg,weight] =
(24.5,2600)

8mpg =s8mpg =s

700weight =s

700weight =s

Principal
Eigenvector

of S



Covariance Fun Facts
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•True or False: If sxy = 0 then X and Y are 
independent

How could 
you prove 
or disprove 

these?



Covariance Fun Facts
For example, let X be uniformly distributed in [−1, 1] 
and let Y = X2. 
Clearly, X and Y are dependent, but

https://en.wikipedia.org/wiki/Covariance
#Uncorrelatedness_and_independence



Covariance Fun Facts
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•True or False: If X and Y are independent 
then sxy = 0

https://en.wikipedia.org/wiki/Covariance
#Uncorrelatedness_and_independence



Covariance Fun Facts
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ΣμXμXXCov
•True or False: If sxy = sx sy then X and Y are 
deterministically related
•True or False: If X and Y are deterministically 
related then sxy = sx sy

How could 
you prove 
or disprove 

these?



General Covariance

ΣμXμXXCov =--=  ))((E T
xx ][] [

Let X = (X1,X2, … Xk) be a vector of k continuous random variables

ji xxjiij XXCov s== ],[Σ

S is a k x k symmetric positive semi-definite  (PSD) matrix
If all distributions are linearly independent it is positive definite
If the distributions are linearly dependent it has at least on zero 
eigenvalue



Test your understanding
? ][][][ does ever) (if When :Question YVarXVarYXVar +=+

A) All the time?
B) Only when X and Y are independent?
C) It can fail even if X and Y are independent?



Marginal Distributions
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Conditional 
Distributions
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Conditional 
Distributions
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Independence Revisited

It’s easy to prove that these statements are equivalent…
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More useful stuff

Bayes
Rule

(These can all be 
proved from 
definitions on 

previous slides)
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Mixing discrete and continuous variables
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Mixing discrete and continuous variables

P(EduYears,Wealthy)



Mixing discrete and continuous variables

P(EduYears,Wealthy)

P(Wealthy| EduYears)



Mixing discrete and continuous variables
Re
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P(EduYears,Wealthy)

P(Wealthy| EduYears)
P(EduYears|Wealthy)



What you should know
• You should

• be able to play with discrete, continuous and mixed joint 
distributions

• be happy with the difference between p(x) and P(A)
• be intimate with expectations, variance and covariance of 

continuous and discrete random variables
• smile when you meet a covariance matrix

• Independence and its consequences should be 
second nature
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