Linear smoother

\[\hat{y} = \sum_{i=1}^{n} \ell_i(x) y_i \]

\[\hat{y} = S\ y \]

where \(s_{ij} = s_{ij}(x) \)

e.g. \(s_{ij} = \text{diag}(l_i(x)) \)
Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by Lyle Ungar)

Note: supplemental material for today is supplemental; not required!
Why do online learning?

- Batch learning can be expensive for big datasets
 - How expensive is it to compute $(X^TX)^{-1}$ for X?
 - Tricky to parallelize

A) n^3
B) p^3
C) np^2
D) n^2p
Why do online learning?

- Batch learning can be expensive for big datasets
 - How hard is it to compute \((X^TX)^{-1}\)?
 - \(np^2\) to form \(X^TX\)
 - \(p^3\) to invert
 - Tricky to parallelize inversion
- Online methods are easy in a map-reduce environment
 - They are often clever versions of stochastic gradient descent

Have you seen map-reduce/hadoop?

A) Yes
B) No
Online linear regression

• **Minimize** \(\text{Err} = \sum_i (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \)
 - Using stochastic gradient descent

 Where we look at each observation \((\mathbf{x}_i, y_i)\) sequentially and decrease its error \(\text{Err}_i = (y_i - \mathbf{w}^T \mathbf{x}_i)^2\)

• **LMS (Least Mean Squares) algorithm**
 - \(\mathbf{w}_{i+1} = \mathbf{w}_i - \eta/2 \frac{d\text{Err}_i}{d\mathbf{w}_i} \)
 - \(\frac{d\text{Err}_i}{d\mathbf{w}_i} = -2 (y_i - \mathbf{w}_i^T \mathbf{x}_i) \mathbf{x}_i \)

 \(= -2 r_i \mathbf{x}_i \)

 \[\mathbf{w}_{i+1} = \mathbf{w}_i + \eta r_i \mathbf{x}_i \]

Note that I is the index for both the iteration and the observation, since there is one update per observation

How do you pick the “learning rate” \(\eta\)?
Online linear regression

• LMS (Least Mean Squares) algorithm

\[\mathbf{w}_{i+1} = \mathbf{w}_i + \eta \ r_i \mathbf{x}_i \]

• Converges for \(0 < \eta < \lambda_{\text{max}} \)
 • Where \(\lambda_{\text{max}} \) is the largest eigenvalue of the covariance matrix \(\mathbf{X}^\top \mathbf{X} \)

• Convergence rate is inversely proportional to \(\lambda_{\text{max}}/\lambda_{\text{min}} \) (ratio of extreme eigenvalues of \(\mathbf{X}^\top \mathbf{X} \))
Online learning methods

• Least mean squares (LMS)
 • Online regression -- L_2 error

• Perceptron
 • Online SVM -- Hinge loss
Perceptron Learning Algorithm

Input: A list T of training examples $\langle x_0, y_0 \rangle \ldots \langle x_n, y_n \rangle$ where $\forall i : y_i \in \{+1, -1\}$

Output: A classifying hyperplane \vec{w}

Randomly initialize \vec{w};

while model \vec{w} makes errors on the training data do

 for $\langle x_i, y_i \rangle$ in T do

 Let $\hat{y} = \text{sign}(\vec{w} \cdot \vec{x}_i)$;

 if $\hat{y} \neq y_i$ **then**

 $\vec{w} = \vec{w} + y_i \vec{x}_i$;

 end

 end

end

What do we do if error is zero?

Of course, this only converges for linearly separable data
Perceptron Learning Algorithm

For each observation \((y_i, x_i)\)

\[
 w_{i+1} = w_i + \eta \ r_i \ x_i
\]

Where \(r_i = y_i - \text{sign}(w_i^T x_i)\)

and \(\eta = \frac{1}{2}\)

I.e., if we get it right: *no change*

if we got it wrong: \(w_{i+1} = w_i + y_i \ x_i\)
Perceptron Update

If the prediction at \(x_1 \) is wrong, what is the true label \(y_1 \)?

How do you update \(\mathbf{w} \)?
Perceptron Update Example II

\[w = w + (-1)x \]
Properties of the Simple Perceptron

• You can prove that
 • If it’s possible to separate the data with a hyperplane (i.e. if it’s linearly separable), then the algorithm will converge to that hyperplane.
 • And it will converge such that the number of mistakes M it makes is bounded by
 $$M < \frac{R^2}{\gamma}$$
 where
 $$R = \max_i |x_i|_2$$
 size of biggest x
 $$\gamma > y_i \cdot w^T x_i$$
 > 0 if separable
Properties of the Simple Perceptron

But what if it isn’t separable?

- Then perceptron is unstable and bounces around
Voted Perceptron

• Works just like a regular perceptron, except you keep track of all the intermediate models you created
• When you want to classify something, you let each of the many models vote on the answer and take the majority

Often implemented after a “burn-in” period
Properties of Voted Perceptron

• Simple!
• Much better generalization performance than regular perceptron
 • Almost as good as SVMs
 • Can use the ‘kernel trick’
• Training is as fast as regular perceptron
• But run-time is slower
 • Since we need n models
Averaged Perceptron

• Return as your final model the *average* of all your intermediate models
• Approximation to voted perceptron
• Again extremely simple!
 • And can use kernels
• Nearly as fast to train and exactly as fast to run as regular perceptron
Many possible Perceptrons

• If point x_i is misclassified
 • $w_{i+1} = w_i + \eta y_i x_i$

• Different ways of picking learning rate η

• Standard perceptron: $\eta = 1$
 — Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)

• Pick η to maximize the margin ($w_i^T x_i$) in some fashion
 — Can get bounds on error even for non-separable case
Can we do a better job of picking η?

- Perceptron:

 For each observation (y_i, x_i)

 $$w_{i+1} = w_i + \eta \cdot r_i \cdot x_i$$

 where $r_i = y_i - \text{sign}(w_i^T x_i)$

 and $\eta = \frac{1}{2}$

Let’s use the fact that we are actually trying to minimize a loss function.
Passive Aggressive Perceptron

- Minimize the hinge loss at each observation
 - $L(w_i; x_i, y_i) = 0$ if $y_i w_i^T x_i \geq 1$ (loss 0 if correct with margin > 1)
 - $1 - y_i w_i^T x_i$ else

- Pick w_{i+1} to be as close as possible to w_i while still setting the hinge loss to zero
 - If point x_i is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - $w_{i+1} = w_i + \eta y_i x_i$
 - where $\eta = L(w_i; x_i, y_i)/||x_i||^2$

- Can prove bounds on the total hinge loss
Passive-Aggressive = MIRA

\[w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i \]

easy to show:

\[y_i (w_{i+1} \cdot x_i) = y_i (w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i) \cdot x_i = 1 \]
Margin-Infused Relaxed Algorithm (MIRA)

- **Multiclass**: each class has a prototype vector
 - Note that the prototype \(w \) is like a feature vector \(x \)
- Classify an instance by choosing the class whose prototype vector is *most similar* to the instance
 - *Has the greatest dot product with the instance*
- During training, when updating make the ‘smallest’ change to the prototype vectors which guarantees correct classification by a minimum margin
 - “passive aggressive”
What you should know

- LMS
 - Online regression

- Perceptrons
 - Online SVM
 - Large margin / hinge loss
 - Has nice mistake bounds (for separable case)
 - See wiki
 - In practice use averaged perceptrons
 - Passive Aggressive perceptrons and MIRA
 - Change \(w \) just enough to set it’s hinge loss to zero.

What we didn’t cover:
feature selection