Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by Lyle Ungar)

Note: supplemental material for today is supplemental; not required!

Why do online learning?

• Batch learning can be expensive for big datasets

• How expensive is it to compute (X^TX)⁻¹ for X?

Why do online learning?

Batch learning can be expensive for big datasets

- How hard is it to compute $(X^TX)^{-1}$?
 - np² to form X^TX
 - p³ to invert
- Tricky to parallelize inversion

Online methods are easy in a map-reduce environment

 They are often clever versions of stochastic gradient descent Have you seen map-reduce/hadoop?
A) Yes B) No

Online linear regression

- ♦ Minimize Err = ∑_i (y_i w^Tx_i)² using stochastic gradient descent
 - Look at each observation (x_i,y_i) sequentially and decrease its error Err_i = (y_i - w^Tx_i)²
- LMS (Least Mean Squares) algorithm
 - $\mathbf{w}_{i+1} = \mathbf{w}_i \eta/2 \ dErr_i/d\mathbf{w}_i$
 - $dErr_i/dw_i = -2 (y_i w_i^T x_i) x_i = -2 r_i x_i$ $w_{i+1} = w_i + \eta r_i x_i$

 $r_i X_i$ How do you pick the "learning rate" η ?

Note that *i* is the index for both the iteration and the observation, since there is one update per observation

Online linear regression

LMS (Least Mean Squares) algorithm

 $\mathbf{w}_{i+1} = \mathbf{w}_i + \eta \mathbf{r}_i \mathbf{x}_i$

\blacklozenge Converges for $~~0 < \eta < \lambda_{max}$

- Where λ_{max} is the largest eigenvalue of the covariance matrix $\bm{X}^T\bm{X}$

• Convergence rate is inversely proportional to $\lambda_{max}/\lambda_{min}$ (ratio of extreme eigenvalues of X^TX)

Online learning methods

Least mean squares (LMS)

• Online regression -- L₂ error

Perceptron

• Online SVM -- Hinge loss

Perceptron Learning Algorithm

Input: A list T of training examples $\langle \vec{x}_0, y_0 \rangle \dots \langle \vec{x}_n, y_n \rangle$ where $\forall i : y_i \in \{+1, -1\}$ Output: A classifying hyperplane \vec{w} Randomly initialize \vec{w} ; while model \vec{w} makes errors on the training data do for $\langle \vec{x}_i, y_i \rangle$ in T do Let $\hat{y} = sign(\vec{w} \cdot \vec{x}_i)$; if $\hat{y} \neq y_i$ then $\vec{w} = \vec{w} + y_i \vec{x}_i$; end end end What do we do if error is zero?

Of course, this only converges for linearly separable data

Perceptron Learning Algorithm

For each observation (y_i, \mathbf{x}_i)

 $\mathbf{w}_{i+1} = \mathbf{w}_i + \eta \mathbf{r}_i \mathbf{x}_i$

Where $r_i = y_i - sign(\mathbf{w}_i^T \mathbf{x}_i)$ and $\eta = \frac{1}{2}$ I.e., if we get it right: *no change* if we got it wrong: $\mathbf{w}_{i+1} = \mathbf{w}_i + y_i \mathbf{x}_i$

Perceptron Update

Perceptron Update Example II

Properties of the Simple Perceptron

You can prove that

- If it's possible to separate the data with a hyperplane (i.e. if it's linearly separable), then the algorithm will converge to that hyperplane.
- And it will converge such that the number of mistakes M it makes is bounded by

 $M < R^2/\gamma^2$

where (assume the true **w** has been normalized: $||\mathbf{w}^*||_2=1$)

 $R = \max_i ||\mathbf{x}_{ij}|_2$ size of biggest \mathbf{x} $\gamma <= y_i \ \mathbf{w}^{*T} \mathbf{x}_i$ > 0 if separable

Properties of the Simple Perceptron

But what if it isn't separable?

• Then perceptron is unstable and bounces around

Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created
- When you want to classify something, you let each of the many models vote on the answer and take the majority

Often implemented after a "burn-in" period

Properties of Voted Perceptron

♦ Simple!

Much better generalization performance than regular perceptron

- Almost as good as SVMs
- Can use the 'kernel trick'

Training is as fast as regular perceptron

- But run-time is slower
 - Since we need **n** models

Averaged Perceptron

- Return as your final model the average of all your intermediate models
- Approximation to voted perceptron
- Again extremely simple!
 - And can use kernels

 Nearly as fast to train and exactly as fast to run as regular perceptron

Many possible Perceptrons

- If point x_i is misclassified
 - $\mathbf{w}_{i+1} = \mathbf{w}_i + \eta y_i \mathbf{x}_i$
- Different ways of picking learning rate η
- Standard perceptron: $\eta = 1$
 - Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)
 - Can get bounds on error even for non-separable case
- Alternate: pick η to maximize the margin (w_i^Tx_i) in some fashion

Can we do a better job of picking η ?

Perceptron:

For each observation (y_i, \mathbf{x}_i) $\mathbf{w}_{i+1} = \mathbf{w}_i + \eta r_i \mathbf{x}_i$ where $r_i = y_i - sign(\mathbf{w}_i^T \mathbf{x}_i)$ and $\eta = \frac{1}{2}$

Let's use the fact that we are actually trying to minimize a loss function

Passive Aggressive Perceptron

- Minimize the hinge loss at each observation
 - $L(\mathbf{w}_i; \mathbf{x}_i, y_i) = 0$ if $y_i \mathbf{w}_i^T \mathbf{x}_i \ge 1$ (loss 0 if correct with margin > 1) $1 - y_i \mathbf{w}_i^T \mathbf{x}_i$ else
- Pick w_{i+1} to be as close as possible to w_i while still setting the hinge loss to zero
 - If point x_i is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - $\mathbf{w}_{i+1} = \mathbf{w}_i + \eta y_i \mathbf{x}_i$
 - where $\eta = L(\mathbf{w}_i; \mathbf{x}_i, y_i) / ||\mathbf{x}_i||^2$
- Can prove bounds on the total hinge loss

Passive-Aggressive = MIRA

$$w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i$$

Margin-Infused Relaxed Algorithm (MIRA)

Multiclass; each class has a prototype vector

- Note that the prototype *w* is like a feature vector *x*
- Classify an instance by choosing the class whose prototype vector is most similar to the instance
 - Has the greatest dot product with the instance

 During training, make the 'smallest' change to the prototype vectors which guarantees correct classification by a specified margin

• "passive aggressive"

What you should know

LMS

• Online regression

Perceptrons

- Online SVM
 - Large margin / hinge loss
- Has nice mistake bounds (for separable case): see wiki
- In practice, use averaged perceptrons
- Passive Aggressive perceptrons and MIRA
 - Change *w* just enough to set its hinge loss to zero.

What we didn't cover: feature selection