
Online Learning: 
LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard
and Mitch Marcus (and lots original slides by Lyle Ungar)

Note: supplemental material for today is 
supplemental; not required!



Why do online learning?
u Batch learning can be expensive for big datasets

l How expensive is it to compute (XTX)-1  for X?

A)n3

B)p3

C)np2

D)n2p



Why do online learning?
u Batch learning can be expensive for big datasets

l How hard is it to compute (XTX)-1 ?
n np2 to form XTX
n p3 to invert

l Tricky to parallelize inversion
u Online methods are easy in a map-reduce environment

l They are often clever versions of stochastic gradient descent
Have you seen map-reduce/hadoop?
A) Yes
B) No



Online linear regression
u Minimize Err = Si (yi – wTxi)2 using stochastic gradient 

descent
l Look at each observation (xi ,yi ) sequentially and decrease its 

error Erri =  (yi – wTxi)2

u LMS (Least Mean Squares) algorithm
l wi+1 = wi – h/2 dErri/dwi

l dErri/dwi = - 2 (yi – wi
Txi) xi = - 2 ri xi

wi+1 = wi + h ri xi

Note that i is the index for both the iteration and the observation, since there is one update 
per observation

How do you pick the “learning rate” h? 



Online linear regression
u LMS (Least Mean Squares) algorithm

wi+1 = wi + h ri xi

u Converges for   0 < h < lmax
l Where lmax is the largest eigenvalue of the covariance 

matrix XTX
u Convergence rate is inversely proportional to 
lmax/lmin (ratio of extreme eigenvalues of XTX)



Online learning methods
u Least mean squares (LMS)

l Online regression  -- L2 error
u Perceptron

l Online SVM -- Hinge loss



Perceptron Learning Algorithm 

If you were wrong, make 
w look more like x

What do we do if error is zero?

Of course, this only converges for linearly separable data



Perceptron Learning Algorithm 
For each observation (yi , xi)

wi+1 = wi + h ri xi

Where ri = yi – sign(wi
Txi)

and h = ½
I.e., if we get it right: no change 

if we got it wrong: wi+1 = wi + yi xi



Perceptron Update
If the prediction at x1 is wrong, 
what is the true label y1?

How do you update w?



Perceptron Update Example II
w = w + (-1) x



Properties of the Simple Perceptron
uYou can prove that 

l If it’s possible to separate the data with a hyperplane
(i.e. if it’s linearly separable), then the algorithm will converge to 
that hyperplane.

l And it will converge such that the number of mistakes M it 
makes is bounded by

M < R2/g2

where (assume the true w has been normalized: ||w*||2=1)
R = maxi ||xi||2 size of biggest x
g <= yi w*Txi > 0 if separable



Properties of the Simple Perceptron

But what if it isn’t separable? 
l Then perceptron is unstable and bounces around



Voted Perceptron
u Works just like a regular perceptron, except you keep track 

of all the intermediate models you created
u When you want to classify something, you let each of the 

many models vote on the answer and take the majority

Often implemented after a “burn-in” period



Properties of Voted Perceptron
uSimple!
uMuch better generalization performance than 

regular perceptron 
l Almost as good as SVMs
l Can use the ‘kernel trick’

uTraining is as fast as regular perceptron
uBut run-time is slower

l Since we need n models



Averaged Perceptron
uReturn as your final model the average of all 

your intermediate models
uApproximation to voted perceptron
uAgain extremely simple!

l And can use kernels
uNearly as fast to train and exactly as fast to run 

as regular perceptron



Many possible Perceptrons 
u If point xi is misclassified

l wi+1 = wi + h yi xi

u Different ways of picking learning rate h
u Standard perceptron: h = 1 

l Guaranteed to converge to the correct answer in a finite 
time if the points are separable (but oscillates otherwise)

l Can get bounds on error even for non-separable case
u Alternate: pick h to maximize the margin (wi

Txi) 
in some fashion



Can we do a better job of picking h?
u Perceptron:

For each observation (yi , xi)
wi+1 = wi + h ri xi

where ri = yi – sign(wi
Txi)

and h = ½

Let’s use the fact that we are actually trying to 
minimize a loss function



Passive Aggressive Perceptron 
• Minimize the hinge loss at each observation

l L(wi; xi,yi) = 0 if yi wi
Txi >= 1    (loss 0 if correct with margin > 1)

1 – yi wi
Txi else

• Pick wi+1 to be as close as possible to wi while still 
setting the hinge loss to zero
l If point xi is correctly classified with a margin of at least 1

n no change
l Otherwise

n wi+1 = wi + h yi xi
n where h = L(wi; xi,yi)/||xi||2

• Can prove bounds on the total hinge loss



Passive-Aggressive = MIRA



Margin-Infused Relaxed Algorithm (MIRA)
u Multiclass; each class has a prototype vector

l Note that the prototype w is like a feature vector x
u Classify an instance by choosing the class whose prototype 

vector is most similar to the instance
l Has the greatest dot product with the instance

u During training, make the ‘smallest’ change to the prototype 
vectors which guarantees correct classification by a 
specified margin
l “passive aggressive”



What you should know
u LMS

l Online regression
u Perceptrons

l Online SVM
n Large margin / hinge loss

l Has nice mistake bounds (for separable case): see wiki
l In practice, use averaged perceptrons
l Passive Aggressive perceptrons and MIRA

n Change w just enough to set its hinge loss to zero.

What we didn’t cover: feature 
selection


