Online Learning:
LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard
and Mitch Marcus (and lots original slides by Lyle Ungar)

Note: supplemental material for today is
supplemental; not required!

Why do online learning?

+ Batch learning can be expensive for big datasets
o How expensive is it to compute (X"X)* for X?

|
A,B,CorD

A)n®
B)p* °
C)np2 cle

D)nzp D|D

Why do online learning?

+ Batch learning can be expensive for big datasets
o How hard is it to compute (X"X)1?
= Np? to form XX
= p3toinvert
o Tricky to parallelize inversion

¢ Online methods are easy in a map-reduce environment

e They are often clever versions of stochastic gradient descent
Have you seen map-reduce/hadoop? ¥ "

Install the app from Make sure you are in
A) Y e S polievcomzpp il Show mode

Online linear regression

¢ Minimize Err = 5 (y,— w'x)? using stochastic gradient
descent
o Look at each observation (x;,y;) sequentially and decrease its
error Err; = (y;— w'x;)?
¢ LMS (Least Mean Squares) algorithm
o Wy =W, —n/2dErr/dw,
o dErr/dw,=-2 (yi—wW/x)X; =-2rX
Wirg = Wi T 1 T X How do you pick the “learning rate” n?

Note that i is the index for both the iteration and the observation, since there is one update
per observation

Online linear regression

¢ LMS (Least Mean Squares) algorithm
Wir1 = Wi+ M X
¢ Converges for 0<n < A

o Where A, is the largest eigenvalue of the covariance
matrix XX

& Convergence rate is inversely proportional to
MmadAmin (ratio of extreme eigenvalues of X™X)

Online learning methods

¢ Least mean squares (LMS)
e Online regression -- L, error

¢ Perceptron
e Online SVM -- Hinge loss

Perceptron Learning Algorithm

Input: A list T of training examples (Zg, yg) - - - (Zn, Yn) Where
Vi:y; € {+1,—1}
Output: A classifying hyperplane w
Randomly initialize w;
while model W makes errors on the training data do
for (fz, yz> in T do
Let § = sign(w - Z;);
if yZé y: then If you were wrong, make

W =W + Y; Ts; w look more like x
end

end

end What do we do if error is zero?

Of course, this only converges for linearly separable data

Perceptron Learning Algorithm

For each observation (y;, x;)
Wi = Wi+ n X

Where r; = y;— sign(w;'x;)
and n =%
l.e., Iif we get it right: no change
Iif we got it wrong: w4 = W; + y. X,

Perceptron Update

If the prediction at x4 is wrong,
A what is the true label y,?

How do you update w?

w

Perceptron Update Example I

w=w+(-1)x

Properties of the Simple Perceptron

¢ You can prove that

e Ifit's possible to separate the data with a hyperplane
(i.e. if it’s linearly separable), then the algorithm will converge to

that hyperplane.
o And it will converge such that the number of mistakes M it
makes is bounded by

M < R%/y?
where (assume the true w has been normalized: ||w*||,=1)
R = max; |||, size of biggest x

y <=V WX > (if separable

Properties of the Simple Perceptron

But what if it isn’t separable?
e Then perceptron is unstable and bounces around

Voted Perceptron

¢ Works just like a regular perceptron, except you keep track
of all the intermediate models you created

¢ When you want to classify something, you let each of the
many models vote on the answer and take the majority

Often implemented after a “burn-in” period

Properties of Voted Perceptron

+ Simple!

¢ Much better generalization performance than
regular perceptron
o Almost as good as SVMs
e Can use the ‘kernel trick’

Training is as fast as regular perceptron

¢ But run-time is slower
e Since we need n models

Averaged Perceptron

Return as your final model the average of all
your intermediate models

¢ Approximation to voted perceptron
¢ Again extremely simple!
e And can use kernels

Nearly as fast to train and exactly as fast to run
as regular perceptron

Many possible Perceptrons

¢ If point x; is misclassified
® Wi =Wt nYiX
+ Different ways of picking learning rate

& Standard perceptron: n =1

o Guaranteed to converge to the correct answer in a finite
time if the points are separable (but oscillates otherwise)

e Can get bounds on error even for non-separable case

¢ Alternate: pick 1 to maximize the margin (w;'x;)
in some fashion

Can we do a better job of picking n?

¢ Perceptron:
For each observation (y;, x;)
Wi = Wit M 16X
where r; = y; - sign(w;"x;)
and n =%

Let's use the fact that we are actually trying to
minimize a loss function

Passive Aggressive Perceptron

« Minimize the hinge loss at each observation
o L(w;x:y)=0ify;w'x,>=1 (loss 0 if correct with margin > 1)
1-vyiwy'x; else
« Pick w,,, to be as close as possible to w, while still

setting the hinge loss to zero
o If point x; is correctly classified with a margin of at least 1
= NO change
o Otherwise
= Wirg = Wit 1 Yi X
= Where m = L(w;; x;,yi)/|[xil
. Can prove bounds on the total hinge loss

Passive-Aggressive = MIRA

Yi — Wi * Ty

Wi4+1 = Wi EAE T
1
easy to show: b -,
yi(wipr - @) = yi (wi + = ||x-|z|2) w =1 |
’ .&3‘“% - /_% perceptron
v B 4MIRA

Margin-Infused Relaxed Algorithm (MIRA)

¢ Multiclass; each class has a prototype vector
o Note that the prototype w is like a feature vector x

¢ Classify an instance by choosing the class whose prototype
vector is most similar to the instance

e Has the greatest dot product with the instance

¢ During training, make the ‘smallest’ change to the prototype
vectors which guarantees correct classification by a
specified margin

e ‘passive aggressive”

What you should know

¢ LMS
e Online regression What we didn’t cover: feature
selection
¢ Perceptrons
e Online SVM

» Large margin / hinge loss
e Has nice mistake bounds (for separable case): see wiki
e In practice, use averaged perceptrons
o Passive Aggressive perceptrons and MIRA

= Change w just enough to set its hinge loss to zero.

