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What we’re going to do 
•  We will review the fundamentals of probability. 
•  It’s really going to be worth it  

•  Much of this course builds on probabilities 
•  E.g. Naïve Bayes, Logistic regression, Bayes nets, LDA … 
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Key concepts 
•  Sample spaces, Events and Random Variables 
•  Expectation 
•  Probability distributions 

•  Discrete, continuous and joint distributions 
•  Marginalization 
•  PDFs and CDFs 

•  Rules of probability 
•  Conditional probability, Bayes rule, Chain rule 
•  Independence, Conditional independence 
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Discrete Random Variables 
•  A is a Boolean-valued random variable if A 

denotes an event, and there is some degree of 
uncertainty as to whether A occurs. 

•  Examples 
•  A = The US president in 2023 will be male 
•  A = You wake up tomorrow with a headache 
•  A = You have Ebola 

A Random variable maps from an element of 
the sample space to a real number 

How is this 
slide wrong? 
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Probabilities 
•  We write P(A) as �the fraction of possible worlds 

in which A is true� 
•  We could at this point spend 2 hours on the 

philosophy of this. 
•  But we won’t. 
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Visualizing A 

Event space of 
all possible 
worlds 

Its area is 1 

 
 
 
 
 
 
 
 

 
 
 
 

Worlds in which A is False 

Worlds in which 
A is true 

P(A) = Area of 
reddish oval 
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The Axioms of Probability 
•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

 
 
 
Where do these axioms come from? Were they �discovered�?  
Answers coming up later. 

Slide 9 Copyright © Andrew W. Moore 

Interpreting the axioms 
•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

The area of A can�t get 
any smaller than 0 

And a zero area would 
mean no world could 
ever have A true  
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Interpreting the axioms 
•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

The area of A can�t get 
any bigger than 1 

And an area of 1 would 
mean all worlds will have 
A true  
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Interpreting the axioms 
•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

A 

B 
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Interpreting the axioms 
•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

A 

B 

P(A or B) 

B P(A and B) 

Simple addition and subtraction 



Slide 13 Copyright © Andrew W. Moore 

These Axioms are Not to be Trifled With 
•  There have been attempts to do different 

methodologies for uncertainty 
•  Fuzzy Logic 
•  Three-valued logic 
•  Dempster-Shafer 
•  Non-monotonic reasoning 

•  But the axioms of probability are the only system 
with this property:  

    If you gamble using them you can’t be unfairly exploited by an 
opponent using some other system [di Finetti 1931] 
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Theorems from the Axioms 
•  0 <= P(A) <= 1,  
•  P(True) = 1,  
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

 
From these we can prove: 
P(not A) = P(~A) = 1-P(A) 
 

•  How? 
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Side Note 
•  I am inflicting these proofs on you for two 

reasons: 
1.  These kind of manipulations will need to be second 

nature to you if you use probabilistic analytics in depth 
2.  Suffering is good for you 
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Another important theorem 
•  0 <= P(A) <= 1,  
•  P(True) = 1,  
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

 
From these we can prove: 
P(A) = P(A ^ B) + P(A ^ ~B) 
 

•  How? 
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Random Variables 
•  A random variable maps from an element of a 

sample space to a discrete or real property of that 
element 

•  Examples 
•  S(x): person x is male! 1 

                    x is female! 0 
•  A(x): = person x ! x’s age 

We assign a probability to each outcome 
•  P(S(x) = 1) 
•  P(A(x) = 25) 

 

Technically: random variable 
maps from an element of the 

sample space to a real 
number 
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Multivalued Random Variables 
•  Suppose A can take on more than 2 values 
•  A is a random variable with arity k if it can take on 

exactly one value out of {v1,v2, .. vk} 
•  Thus… 

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP
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An easy fact about Multivalued 
Random Variables: 

•  Using the axioms of probability… 
0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
P(A or B) = P(A) + P(B) - P(A and B) 

•  And assuming that A obeys… 

•  It’s easy to prove that 

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)()(
1

21 ∑
=

===∨=∨=
i

j
ji vAPvAvAvAP
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An easy fact about Multivalued 
Random Variables: 

•  Using the axioms of probability… 
0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
P(A or B) = P(A) + P(B) - P(A and B) 

•  And assuming that A obeys… 

•  It’s easy to prove that 

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)()(
1

21 ∑
=

===∨=∨=
i

j
ji vAPvAvAvAP

•  And thus we can prove 

1)(
1

==∑
=

k

j
jvAP

Slide 21 Copyright © Andrew W. Moore 

Another fact about Multivalued 
Random Variables: 

•  Using the axioms of probability… 
0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
P(A or B) = P(A) + P(B) - P(A and B) 

•  And assuming that A obeys… 

•  It’s easy to prove that 

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)(])[(
1

21 ∑
=

=∧==∨=∨=∧
i

j
ji vABPvAvAvABP
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Another fact about Multivalued 
Random Variables: 

•  Using the axioms of probability… 
0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
P(A or B) = P(A) + P(B) - P(A and B) 

•  And assuming that A obeys… 

•  It�s easy to prove that 

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)(])[(
1

21 ∑
=

=∧==∨=∨=∧
i

j
ji vABPvAvAvABP

•  And thus we can prove 

)()(
1
∑
=

=∧=
k

j
jvABPBP
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Elementary Probability in Pictures 
•  P(~A) + P(A) = 1 
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Elementary Probability in Pictures 
•  P(B) = P(B ^ A) + P(B ^ ~A) 
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Elementary Probability in Pictures 
1)(

1
==∑

=

k

j
jvAP
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Elementary Probability in Pictures 
)()(

1
∑
=

=∧=
k

j
jvABPBP
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Conditional Probability 
•  P(A|B) = Fraction of worlds in which B is true that 

also have A true 

F 

H 

H = �Have a headache� 
F = �Coming down with Flu� 
 
P(H) = 1/10 
P(F) = 1/40 
P(H|F) = 1/2 
 
�Headaches are rare and flu 
is rarer, but if you�re coming 
down with �flu there�s a 
50-50 chance you’ll have a 
headache.� 
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Conditional Probability 
F 

H 

H = �Have a headache� 
F = �Coming down with Flu� 
 
P(H) = 1/10 
P(F) = 1/40 
P(H|F) = 1/2 

P(H|F) = Fraction of flu-inflicted 
worlds in which you have a 
headache 
 
= #worlds with flu and headache 
    ------------------------------------ 
          #worlds with flu 
 
= Area of �H and F� region 
   ------------------------------ 
         Area of �F� region 
 
= P(H ^ F) 
   ----------- 
       P(F)  

Slide 29 Copyright © Andrew W. Moore 

Definition of Conditional Probability 
                     P(A ^ B)  
P(A|B)  =  ----------- 
                    P(B)  

Corollary: The Chain Rule 
P(A ^ B) = P(A|B) P(B)  
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Probabilistic Inference 
F 

H 

H = �Have a headache� 
F = �Coming down with Flu� 
 
P(H) = 1/10 
P(F) = 1/40 
P(H|F) = 1/2 

One day you wake up with a headache. You think: �Drat! 
50% of flus are associated with headaches so I must have a 
50-50 chance of coming down with flu� 
 
 
 
Is this reasoning good? 
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Probabilistic Inference 
F 

H 

H = �Have a headache� 
F = �Coming down with 
Flu� 
 
P(H) = 1/10 
P(F) = 1/40 
P(H|F) = 1/2 

P(F ^ H) = … 
 
 
P(F|H) = … 
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Another way to understand the intuition 
Thanks to Jahanzeb Sherwani for contributing this explanation: 
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What we just did… 
              P(A ^ B)     P(A|B) P(B) 
P(B|A) = ----------- = --------------- 
                 P(A)             P(A) 
 
This is Bayes Rule 

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions of 
the Royal Society of London, 
53:370-418 
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Bayes rule made easy 
•                       B    ~ B 
•                 A   0.01  0.1 
•               ~A   0.09  0.8 
•  Counts instead of probabilities 
•           B    ~ B 
•                 A      1     10 
•               ~A      9     80 

Copyright © Andrew W. Moore 
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Using Bayes Rule to Gamble 

The �Win� envelope has a 
dollar and four beads 
in it 

$1.00 

The �Lose� envelope has 
three beads and no 
money 

Trivial question: someone draws an envelope at random and offers to 
sell it to you. How much should you pay? 
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Using Bayes Rule to Gamble 

The �Win� envelope has a 
dollar and four beads 
in it 

$1.00 

The �Lose� envelope has 
three beads and no 
money 

Interesting question: before deciding, you are allowed to see one bead 
drawn from the envelope. 

Suppose it’s black: How much should you pay?  
Suppose it’s red: How much should you pay? 
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Calculation… 
$1.00 
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More General Forms of Bayes Rule 
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More General Forms of Bayes Rule 

∑
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Useful Easy-to-prove facts 
1)|()|( =¬+ BAPBAP

1)|(
1

==∑
=

An

k
k BvAP
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The Joint Distribution 
Recipe for making a joint distribution 

of M variables: 

Example: Boolean 
variables A, B, C 
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The Joint Distribution 
Recipe for making a joint distribution 

of M variables: 
 
1.  Make a truth table listing all 

combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows). 

Example: Boolean 
variables A, B, C 

A B C 
0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 
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The Joint Distribution 
Recipe for making a joint distribution 

of M variables: 
 
1.  Make a truth table listing all 

combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows). 

2.  For each combination of values, 
say how probable it is. 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 
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The Joint Distribution 
Recipe for making a joint distribution 

of M variables: 
 
1.  Make a truth table listing all 

combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows). 

2.  For each combination of values, 
say how probable it is. 

3.  If you subscribe to the axioms of 
probability, those numbers must 
sum to 1. 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 0.05 
0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 
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Using the 
Joint 

One you have the JD you can 
ask for the probability of any 
logical expression involving 
your attribute 

∑=
E

PEP
 matching rows

)row()(
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Using the 
Joint 

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(
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Using the 
Joint 

P(Poor) = 0.7604 ∑=
E

PEP
 matching rows

)row()(
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Inference 
with the 

Joint 

∑

∑
=

∧
=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(
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Inference 
with the 

Joint 

∑

∑
=

∧
=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(

)row(

)(
)(

)|(

E

EE

P

P

EP
EEPEEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612   
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Inference is a big deal 
•  I’ve got this evidence. What’s the chance that this 

conclusion is true? 
•  I’ve got a sore neck: how likely am I to have meningitis? 
•  I see my lights are out and it’s 9pm. What’s the chance my spouse is 

already asleep? 
•  There’s a thriving set of industries growing based around 

Bayesian Inference, including 
•  Medicine, Pharma, Help Desk Support, Engine Fault Diagnosis 
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Where do Joint Distributions come 
from? 

•  Idea One: Expert Humans 
•  Idea Two: Simpler probabilistic facts and some 

algebra 
Example: Suppose you knew 

P(A) = 0.7 
 
P(B|A) = 0.2 
P(B|~A) = 0.1 

P(C|A^B) = 0.1 
P(C|A^~B) = 0.8 
P(C|~A^B) = 0.3 
P(C|~A^~B) = 0.1 

Then you can automatically 
compute the JD using the 
chain rule 

P(A=x ^ B=y ^ C=z) = 
P(C=z|A=x^ B=y) P(B=y|A=x) P(A=x) 

In another lecture: 
Bayes Nets, a 
systematic way to 
do this. 
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Where do Joint Distributions come 
from? 

•  Idea Three: Learn them from data! 

Prepare to see one of the most impressive learning algorithms 
you’ll come across in the entire course…. 
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Learning a joint distribution 
Build a JD table for your 
attributes in which the 
probabilities are unspecified 

The fill in each row with 

records ofnumber  total
row matching records

)row(ˆ =P
A B C Prob 
0 0 0 ? 

0 0 1 ? 

0 1 0 ? 

0 1 1 ? 

1 0 0 ? 

1 0 1 ? 

1 1 0 ? 

1 1 1 ? 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 Fraction of all records in which 
A and B are True but C is False 
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Example of Learning a Joint 
•  This Joint was 

obtained by 
learning from 
three attributes in 
the UCI �Adult� 
Census 
Database 
[Kohavi 1995] 
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Key concepts 
•  Sample spaces, Events and Random Variables 
•  Expectation 
•  Probability distributions 

•  Discrete, continuous and joint distributions 
•  Marginalization 
•  PDFs and CDFs 

•  Rules of probability 
•  Conditional probability, Bayes rule, Chain rule 
•  Independence, Conditional independence 


