How is my speed?

Slow

Good

Fast

Quick recap of Wed

- ◆ Join piazza (from canvas)
- ◆ If you missed it, watch the Wed lecture (on canvas)
- ◆ See the "resources" page on the wiki
- ♦ HW0 will be published today

Introduce today's TAs

Survey results

- Gather.town
 - Mostly positive
 - turn on your video; Look around for people
- Questions are a challenge
 - chat directly to staff
 - raise hand option to allow people to answer
 - have a course slack
- Post slides in advance
- ♦ Zoom links with the available office hours and the class meetings in a central place on the Canvas
- **♦** Less flipping between screens/slides.
- Better sound quality
- More explicit intro/reading to people with less ML background.
- **♦** Explain difference between transformers and GPT-3

ML in Python

Learning objectives

Be able to do standard matrix operations in numpy

Know key jupyter tricks

 Recognize when code should be vectorized

Why python?

- Alternatives
 - R, matlab, SPSS/SAS/Stata
- **◆** The ML-python universe
 - Python
 - Numpy
 - Scikit-learn or Pytorch
 - Jupyter
 - Colab

DataFrames

pandas

cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92])
cities['Population density'] = cities['Population'] / cities['Area square miles']
cities

		City name	Population	Area square miles	Population density
	0	San Francisco	852469	46.87	18187.945381
	1	San Jose	1015785	176.53	5754.177760
	2	Sacramento	485199	97.92	4955.055147

Environments

> jupyter notebook

https://colab.research.google.com

Matrices in numpy

```
import numpy as np
data = [[3.1, 3.14, 3.1415], [2.7, 2.71, 2.718]]
array1 = np.array(data)
array1
array([[ 3.1 , 3.14 , 3.1415],
       [ 2.7 , 2.71 , 2.718 ]])
array1.dtype
dtype('float64')
array1.shape
(2, 3)
```

Matrix creation

```
np.zeros((3,5))
 array([[ 0., 0., 0., 0., 0.],
       [ 0., 0., 0., 0., 0.],
       [ 0., 0., 0., 0., 0.]])
 np.ones((3,4))
 array([[ 1., 1., 1., 1.],
       [ 1., 1., 1., 1.],
       [ 1., 1., 1., 1.]])
data = np.random.randn(5,3)
data
array([[ 3.10669249, -0.29687844, 0.52947644],
      [0.48135368, 0.76115606, -0.60468068],
      [0.48787342, 0.35323244, 0.89169349],
      [0.2318091, -0.73546908, -0.2662448],
      [0.09345196, 0.92481036, 0.53960019]])
```

Numpy has standard math

```
A=array([[1,2,3],[4,5,6]])
A.mean()
A.min(), A.max(), A.argmin(), A.argmax()
eig(A) - but in a 'package'
svd(A) - but in a 'package'
A.T
A @ B
          or np.matmul(A, B)
          or A.matmul(B)
```

Case Study: yamslam

You should know

- Basic matrix manipulations in numpy
 - A @ B
- ◆ How to check "shapes" of arrays
- ◆ How to use Jupyter
 - "magic" for timing
- How to find math functions you need
- ◆ Meet some other students
 - https://gather.town/aQMGI0I1R8DP0Ovv/penn-cis
 - Firefox or Chrome; not mobile

Top