How is the current course lecture speed?

- Too fast
- Good
- Too slow

Recitation: K-means, GMMs, EM, PCA

Lyle Ungar University of Pennsylvania

How are k-means and k-NN related?

- ◆ What do they each require you to specify?
- ◆ How do the two k's relate?
- ♦ When is one likely to be better or worse than the other?

How many clusters?

How would you pick K?

What is the optimal K for PCA?

- ◆ Approximate x in terms of K eigenvectors, V
 - $\widehat{\boldsymbol{x}}_i = \boldsymbol{\Sigma}_k \ \boldsymbol{z}_{ik} \ \boldsymbol{v}_k$ or $\widehat{\boldsymbol{X}}_K = \boldsymbol{Z}_K \boldsymbol{V}_K^T$
- Distortion
 - $\|\boldsymbol{X} \widehat{\boldsymbol{X}}_{K}\|_{F}^{2}$

What is the optimal K for K-means?

$$J(\mu, r) = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} ||\mu_k - \mathbf{x}_i||_2^2$$

 r_{ik} 1 if point *i* in cluster *k*

 μ_k centroid of cluster k

Radial Basis Functions (RBF)

- ♦ What is the algorithm?
- ♦ What are the hyperparameters?
- ◆ Does it use hard or soft clustering?

How to model HW grade distribution?

- Or donation amounts
- **◆ Zero-inflated models**
 - $p(x) = \pi_1 N(0,0) + \pi_2 N(\mu, \Sigma)$

EM

- ◆ In a GMM, the E-step finds the expected value of what?
- ◆ In data imputation via feature averaging, the E-step finds the expected value of what?
- ◆ In a GMM, the M-step finds the MLE estimate of what?
- ◆ In data imputation via feature averaging, the M-step finds the MLE value of what?

EM for missing data

- ◆ Does EM for imputation work when the data are not missing at random?
 - Why or why not?

How to handle categorical data?

```
X<sub>1</sub>R X<sub>1</sub>G X<sub>1</sub>B X<sub>1</sub>NA
R 1 0 0 0
G 0 1 0 0
B 0 0 1 0
R 1 0 0 0
NA 0 0 0 1
```

"one hot coding"

What if there are *lots* of categories?

- **◆ ZIP** codes (42,000)
- **♦ FIPS codes**
- **♦ SIC Codes**

1623	Water, Sewer, Pipeline, Comm & Power Line Construction
1629	Heavy Construction, Not Elsewhere Classified ^[6]
1700	Construction - Special Trade Contractors
1731	Electrical Work
2000	Food and Kindred Products
2011	Meat Packing Plants
2013	Sausages & Other Prepared Meat Products
2015	Poultry Slaughtering and Processing
2020	Dairy Products
2024	Ice Cream & Frozen Desserts
2030	Canned, Frozen & Preserved Fruit, Veg & Food Specialties
2033	Canned, Fruits, Veg, Preserves, Jams & Jellies

What if there are *lots* of categories?

- **◆** Dimensionality reduce: cluster, PCA, ...
- **♦** Possible features
 - Geolocation
 - Demographics
 - Co-occurrence
 - Product sales, twitter language, ...
- Often someone has already done the clustering

Eigenwords: SVD practice

I ate ham You ate cheese You ate

context

		Word Before ate cheese ham I You				Word After ate cheese ham I You			
	ate	0	0	0	1 2	0	1	1	0 0
	cheese	1	0	0	0 0	0	0	0	0 0
word	ham	1	0	0	0 0	0	0	0	0 0
		0	0	0	0 0	1	0	0	0 0
	You	0	0	0	0 0	2	0	0	0 0

https://colab.research.google.com/drive/1qDvkPOt0bQEkG30lDhboTcaiTc_gtCT#scrollTo=Mgy0mHZppM_1&uniqifier=1