Midterm: Wed 10/18 in class

◆ Question answering session Tues 10/17 5:00 pm

- Annenberg 110
- The midterm will allow one two-sided "cheat sheet"
 - Otherwise closed book, closed notes, no laptop or phone.

Homework

• For team homework, please only submit one copy

- If you resubmit, it should be from the same person
- Otherwise we have two submissions from you

Ridge regression ("Tikhonov regularization") minimizes Err + $\lambda |w|_2^2$ Is Err here Your poll will show here **A)** $\Sigma_{i} (y_{i} - \hat{y}_{i})^{2}$ 1 2 **B**) (1/n) $\sum_{i} (y_i - \hat{y}_i)^2$ Install the app from Make sure you are in pollev.com/app Slide Show mode **C**) sqrt((1/n) Σ_i (y_i- \hat{y}_i)²) Still not working? Get help at pollev.com/app/help or Open poll in your web browser **D**) sqrt($\Sigma_i (y_i - \hat{y}_i)^2$)

Elastic net regularization minimizes $Err + \lambda_1 |w|_1 + \lambda_2 |w|_2^2$

Will this sometimes zero out some features? A) yes B) no

When might this be better than pure L_1 ?

AIC, BIC and RIC Minimize Err/ $2\sigma^2 + \lambda |w|_0$

When we don't know σ^2 , Err/ $2\sigma^2$ is proportional to A) log($\Sigma_i (y_i - \hat{y}_i)^2$)

B) n log($\Sigma_i (y_i - \hat{y}_i)^2$) **C)** n log((1/n) $\Sigma_i (y_i - \hat{y}_i)^2$) **D)** none of the above

AIC, BIC and RIC Minimize Err/ $2\sigma^2 + \lambda |w|_0$

As n becomes large, there is

A) more shrinkageB) less shrinkageC) no change

Entropy review

- You need to transmit a sequence of *n* binary observations (e.g. *y* values), which will be
 - "1" with probability $p_1 = 1/8$
 - "0" with probability $p_0 = 7/8$
- What is the minimum number of bits to code the sequence (for large n)?

Entropy review

- You are doing feature selection where there are far more possible features than observations and expect that roughly 1/8 of the *p* features should be selected.
- What would be a better alternative to RIC?
 Err/2\$\sigma^2\$ +q log (p)

How would you code a decision tree

- Assume p = 16 binary variables x
- Binary y n=64 $|y|_0 = 32$ $|y-\hat{y}|_0 = 2$

How many bits to code the residual? How many bits to code the decision tree?

Which estimator is *consistent*?

A) AIC
B) BIC
C) RIC
D) none of them

Cross Validation

Does LOOCV systematically _____ test error

- A) Overestimate
- B) Underestimate
- C) Neither

Why use Train, Validation and Test sets?

