Midterm: Fri 10/14 in class

- Question answering session Thursday 10/13 5:00 pm
 - Location TBA
- The midterm will allow one two-sided "cheat sheet"
 - Otherwise closed book, closed notes, no laptop or phone.
- Covers through Naïve Bayes, Logistic Regression and boosting
 - no neural nets
For team homework, please only submit one copy

- If you resubmit, it should be from the same person
- Otherwise we have two submissions from you
Regression penalty methods

Ridge regression ("Tikhonov regularization") minimizes

$$Err + \lambda |w|_2^2$$

Is Err here

A) $\Sigma_i (y_i - \hat{y}_i)^2$
B) $(1/n) \Sigma_i (y_i - \hat{y}_i)^2$
C) $\sqrt{ (1/n) \Sigma_i (y_i - \hat{y}_i)^2 }$
D) $\sqrt{\Sigma_i (y_i - \hat{y}_i)^2}$
Regression penalty methods

Elastic net regularization minimizes

\[\text{Err} + \lambda_1 |w|_1 + \lambda_2 |w|_2^2 \]

Will this sometimes zero out some features?

A) yes
B) no

When might this be better than pure L\(_1\)?
Regression penalty methods

AIC, BIC and RIC Minimize

\[
\text{Err/ } \frac{2\sigma^2}{\Sigma_i (y_i - \hat{y}_i)^2} + \lambda \sum |w_i|
\]

When we don’t know \(\sigma^2\), \(\text{Err/ } \frac{2\sigma^2}{\Sigma_i (y_i - \hat{y}_i)^2}\) is proportional to

A) \(\log(\Sigma_i (y_i - \hat{y}_i)^2)\)
B) \(n \log(\Sigma_i (y_i - \hat{y}_i)^2)\)
C) \(n \log(\frac{1}{n} \Sigma_i (y_i - \hat{y}_i)^2)\)
D) none of the above
Regression penalty methods

AIC, BIC and RIC Minimize

\[\text{Err}/ 2\sigma^2 + \lambda |w|_0 \]

As \(n \) becomes large, there is

A) more shrinkage
B) less shrinkage
C) no change
You need to transmit a sequence of \(n \) binary observations (e.g. \(y \) values), which will be
- "1" with probability \(p_1 = 1/8 \)
- "0" with probability \(p_0 = 7/8 \)

What is the minimum number of bits to code the sequence (for large \(n \))?
You are doing feature selection where there are far more possible features than observations and expect that roughly $1/8$ of the p features should be selected.

What would be a better alternative to RIC?

$$\frac{\text{Err}}{2\sigma^2} + q \log (p)$$
How would you code a decision tree

- Assume $p = 16$ binary variables x
- Binary y $n=64$ $|y|_0 = 32$ $|y-\hat{y}|_0 = 2$

```
x_1
T/  \F
y=1 x_{14}
T/  \F
y=0  y=1
```

How many bits to code the residual?
How many bits to code the decision tree?
Regression penalty methods

Which estimator is consistent?

A) AIC
B) BIC
C) RIC
D) none of them
What you should know

◆ How to compute the coding cost of
 ● decision trees, regression models
 ● classification and prediction errors

◆ AIC, BIC and RIC
 ● Assumptions behind them
 ● Why they are useful

You think maybe 10 out of 100,000 features will be significant. Use
A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC

You think maybe 500 out of 1,000 features will be significant. Do not use
A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC
Cross Validation

Does LOOCV systematically _____ test error
- A) Overestimate
- B) Underestimate
- C) Neither

Why use Train, Validation and Test sets?