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Section 5.6

Exercise 1.27

1.6.

(b) First solve the inference problem of determining the conditional density p(¢|x),
and then subsequently marginalize to find the conditional mean given by (1.89).

(c) Find a regression function y(x) directly from the training data.

The relative merits of these three approaches follow the same lines as for classifica-
tion problems above.

The squared loss is not the only possible choice of loss function for regression.
Indeed, there are situations in which squared loss can lead to very poor results and
where we need to develop more sophisticated approaches. An important example
concerns situations in which the conditional distribution p(t|x) is multimodal, as
often arises in the solution of inverse problems. Here we consider briefly one simple
generalization of the squared loss, called the Minkowski loss, whose expectation is
given by

BiL) = [ [ 1560 - t1tp(x, ) ax (1.91)
which reduces to the expected squared loss for ¢ = 2. The function |y — #|? is
plotted against y — ¢ for various values of ¢ in Figure 1.29. The minimum of E[L,]

is given by the conditional mean for ¢ = 2, the conditional median for ¢ = 1, and
the conditional mode for ¢ — 0.

Information Theory

Exercise 1.28

In this chapter, we have discussed a variety of concepts from probability theory and
decision theory that will form the foundations for much of the subsequent discussion
in this book. We close this chapter by introducing some additional concepts from
the field of information theory, which will also prove useful in our development of
pattern recognition and machine learning techniques. Again, we shall focus only on
the key concepts, and we refer the reader elsewhere for more detailed discussions
(Viterbi and Omura, 1979; Cover and Thomas, 1991; MacKay, 2003) .

We begin by considering a discrete random variable x and we ask how much
information is received when we observe a specific value for this variable. The
amount of information can be viewed as the ‘degree of surprise’ on learning the
value of x. If we are told that a highly improbable event has just occurred, we will
have received more information than if we were told that some very likely event
has just occurred, and if we knew that the event was certain to happen we would
receive no information. Our measure of information content will therefore depend
on the probability distribution p(z), and we therefore look for a quantity h(z) that
is a monotonic function of the probability p(z) and that expresses the information
content. The form of A(-) can be found by noting that if we have two events z
and y that are unrelated, then the information gain from observing both of them
should be the sum of the information gained from each of them separately, so that
h(z,y) = h(z) + h(y). Two unrelated events will be statistically independent and
so p(x,y) = p(z)p(y). From these two relationships, it is easily shown that h(x)
must be given by the logarithm of p(z) and so we have
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Figure 1.29 Plots of the quantity L, = |y — t|? for various values of g.
h(z) = —log, p(x) (1.92)

where the negative sign ensures that information is positive or zero. Note that low
probability events = correspond to high information content. The choice of basis
for the logarithm is arbitrary, and for the moment we shall adopt the convention
prevalent in information theory of using logarithms to the base of 2. In this case, as
we shall see shortly, the units of /() are bits (‘binary digits’).

Now suppose that a sender wishes to transmit the value of a random variable to
a receiver. The average amount of information that they transmit in the process is
obtained by taking the expectation of (1.92) with respect to the distribution p(x) and
is given by

Hlz] = =) p(x)log, p(x). (1.93)

This important quantity is called the entropy of the random variable x. Note that
lim, o plnp = 0 and so we shall take p(x) Inp(z) = 0 whenever we encounter a
value for x such that p(x) = 0.

So far we have given a rather heuristic motivation for the definition of informa-
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tion (1.92) and the corresponding entropy (1.93). We now show that these definitions
indeed possess useful properties. Consider a random variable x having 8 possible
states, each of which is equally likely. In order to communicate the value of x to
a receiver, we would need to transmit a message of length 3 bits. Notice that the
entropy of this variable is given by

1
Hlz] = -8 x log2 = 3 bits.

Now consider an example (Cover and Thomas, 1991) of a variable having 8 pos-
sible states {a b, c d e, f, g, h} for which the respective probabilities are given by
(1,11

1
3 18 Ev @, @v @, @) The entropy in this case is given by

1 1 1 1 1 1 1

1 4 1
Hlz] = D) log, 271 log, 178 log, log, — = 2 bits.

51690276 6195261

We see that the nonuniform distribution has a smaller entropy than the uniform one,
and we shall gain some insight into this shortly when we discuss the interpretation of
entropy in terms of disorder. For the moment, let us consider how we would transmit
the identity of the variable’s state to a receiver. We could do this, as before, using
a 3-bit number. However, we can take advantage of the nonuniform distribution by
using shorter codes for the more probable events, at the expense of longer codes for
the less probable events, in the hope of getting a shorter average code length. This
can be done by representing the states {a, b, c,d, e, f, g, h} using, for instance, the
following set of code strings: 0, 10, 110, 1110, 111100, 111101, 111110, 111111.
The average length of the code that has to be transmitted is then

1 1 1 1 1
average code length = 5 X 1—1—4 X 2+ 3 X 3+ 16 X 4+4x 6 x 6 = 2 bits
which again is the same as the entropy of the random variable. Note that shorter code
strings cannot be used because it must be possible to disambiguate a concatenation
of such strings into its component parts. For instance, 11001110 decodes uniquely
into the state sequence ¢, a, d.

This relation between entropy and shortest coding length is a general one. The
noiseless coding theorem (Shannon, 1948) states that the entropy is a lower bound
on the number of bits needed to transmit the state of a random variable.

From now on, we shall switch to the use of natural logarithms in defining en-
tropy, as this will provide a more convenient link with ideas elsewhere in this book.
In this case, the entropy is measured in units of ‘nats’ instead of bits, which differ
simply by a factor of In 2.

We have introduced the concept of entropy in terms of the average amount of
information needed to specify the state of a random variable. In fact, the concept of
entropy has much earlier origins in physics where it was introduced in the context
of equilibrium thermodynamics and later given a deeper interpretation as a measure
of disorder through developments in statistical mechanics. We can understand this
alternative view of entropy by considering a set of NV identical objects that are to be
divided amongst a set of bins, such that there are n; objects in the i** bin. Consider
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the number of different ways of allocating the objects to the bins. There are [N
ways to choose the first object, (N — 1) ways to choose the second object, and
so on, leading to a total of N! ways to allocate all N objects to the bins, where V!
(pronounced ‘factorial N”) denotes the product N x (N —1) x - - - x 2 x 1. However,
we don’t wish to distinguish between rearrangements of objects within each bin. In
the i*® bin there are n;! ways of reordering the objects, and so the total number of
ways of allocating the N objects to the bins is given by

N!
- ILinit

which is called the multiplicity. The entropy is then defined as the logarithm of the
multiplicity scaled by an appropriate constant

w (1.94)

1 1 1
H Nan NlnN. i % Inn;!. (1.95)

We now consider the limit N — oo, in which the fractions n; /N are held fixed, and
apply Stirling’s approximation

InN!~NInN - N (1.96)

which gives
. i i\ ‘ )
Mo i 30 () (§) = - e (197

K]

where we have used ), n; = N. Here p; = limy_(n;/N) is the probability
of an object being assigned to the i*" bin. In physics terminology, the specific ar-
rangements of objects in the bins is called a microstate, and the overall distribution
of occupation numbers, expressed through the ratios n; /N, is called a macrostate.
The multiplicity W is also known as the weight of the macrostate.

We can interpret the bins as the states z; of a discrete random variable X, where
p(X = x;) = p;. The entropy of the random variable X is then

Hlp| = —Zp(xi)lnp(a:i). (1.98)

Distributions p(x;) that are sharply peaked around a few values will have a relatively
low entropy, whereas those that are spread more evenly across many values will
have higher entropy, as illustrated in Figure 1.30. Because 0 < p; < 1, the entropy
is nonnegative, and it will equal its minimum value of O when one of the p, =
1 and all other p;+; = 0. The maximum entropy configuration can be found by
maximizing H using a Lagrange multiplier to enforce the normalization constraint
on the probabilities. Thus we maximize

H=-— Zp(mi) Inp(w) + A (ZP(%) ~ 1) (1.99)
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Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy
H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H =
—1In(1/30) = 3.40.

from which we find that all of the p(z;) are equal and are given by p(z;) = 1/M
where M is the total number of states x;. The corresponding value of the entropy
is then H = In M. This result can also be derived from Jensen’s inequality (to be

Exercise 1.29 discussed shortly). To verify that the stationary point is indeed a maximum, we can
evaluate the second derivative of the entropy, which gives

OH 1
AT (1100
where I;; are the elements of the identity matrix.

We can extend the definition of entropy to include distributions p(z) over con-
tinuous variables x as follows. First divide x into bins of width A. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value x; such that

(i+1)A
/ p(zr)de = p(z;)A. (1.101)
[7AN

We can now quantize the continuous variable = by assigning any value x to the value

x; whenever z falls in the 7*® bin. The probability of observing the value z; is then
p(z;)A. This gives a discrete distribution for which the entropy takes the form

Ha == pe)An(p(:)A) = = 3 pl)Alp(e) A (1102)

where we have used ) . p(z;)A = 1, which follows from (1.101). We now omit
the second term — In A on the right-hand side of (1.102) and then consider the limit
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A — 0. The first term on the right-hand side of (1.102) will approach the integral of
p(z) In p(x) in this limit so that

lim

lim (1.103)

Zp(:vi)Alnp(xi) = —/p(w) Inp(z) dw

where the quantity on the right-hand side is called the differential entropy. We see
that the discrete and continuous forms of the entropy differ by a quantity In A, which
diverges in the limit A — 0. This reflects the fact that to specify a continuous
variable very precisely requires a large number of bits. For a density defined over
multiple continuous variables, denoted collectively by the vector x, the differential
entropy is given by

H[x] = — /p(x) In p(x) dx. (1.104)

In the case of discrete distributions, we saw that the maximum entropy con-
figuration corresponded to an equal distribution of probabilities across the possible
states of the variable. Let us now consider the maximum entropy configuration for
a continuous variable. In order for this maximum to be well defined, it will be nec-
essary to constrain the first and second moments of p(z) as well as preserving the
normalization constraint. We therefore maximize the differential entropy with the

Ludwig Boltzmann
1844-1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
|| classical thermodynamics where it
quantifies the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = kInW in which W represents the
number of possible microstates in a macrostate, and
k ~ 1.38 x 10723 (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s argu-
ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs. The continued attacks on his work
lead to bouts of depression, and eventually he com-
mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = kIn W is carved on
Boltzmann’s tombstone.



54 1. INTRODUCTION

Appendix E

Appendix D

Exercise 1.34

Exercise 1.35

three constraints

/ plr)dr = 1 (1.105)
/ zp(x)de = p (1.106)
/ (x —p)?*p(z)de = o (1.107)

The constrained maximization can be performed using Lagrange multipliers so that
we maximize the following functional with respect to p(z)

—/_Zp(x) Inp(z) dz + Ay </_Zp(:c) do — 1)
A (/Z op(z) dz — u) TW </Z(x — 10)%p(x) dz — 02> .

Using the calculus of variations, we set the derivative of this functional to zero giving
p(x) =exp {—1+ A + Aoz + As(z — p)*} . (1.108)

The Lagrange multipliers can be found by back substitution of this result into the
three constraint equations, leading finally to the result

1 _ 2
Pe) = oy O {—(m%f) } (1.109)

and so the distribution that maximizes the differential entropy is the Gaussian. Note
that we did not constrain the distribution to be nonnegative when we maximized the
entropy. However, because the resulting distribution is indeed nonnegative, we see
with hindsight that such a constraint is not necessary.

If we evaluate the differential entropy of the Gaussian, we obtain

Hlz] = % {1+ In(2r0?)}. (1.110)

Thus we see again that the entropy increases as the distribution becomes broader,
i.e., as 02 increases. This result also shows that the differential entropy, unlike the
discrete entropy, can be negative, because H(z) < 0 in (1.110) for 0% < 1/(2me).

Suppose we have a joint distribution p(x,y) from which we draw pairs of values
of x and y. If a value of x is already known, then the additional information needed
to specify the corresponding value of y is given by — In p(y|x). Thus the average
additional information needed to specify y can be written as

Hly|x] = —//p(y,X) Inp(y|x) dy dx (1.111)
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which is called the conditional entropy of y given x. It is easily seen, using the
product rule, that the conditional entropy satisfies the relation

H[x,y] = H[y|x] + H[x] (1.112)

where H[x, y] is the differential entropy of p(x,y) and H[x] is the differential en-
tropy of the marginal distribution p(x). Thus the information needed to describe x
and y is given by the sum of the information needed to describe x alone plus the
additional information required to specify y given x.

1.6.1 Relative entropy and mutual information

So far in this section, we have introduced a number of concepts from information
theory, including the key notion of entropy. We now start to relate these ideas to
pattern recognition. Consider some unknown distribution p(x), and suppose that
we have modelled this using an approximating distribution ¢(x). If we use ¢(x) to
construct a coding scheme for the purpose of transmitting values of x to a receiver,
then the average additional amount of information (in nats) required to specify the
value of x (assuming we choose an efficient coding scheme) as a result of using ¢(x)
instead of the true distribution p(x) is given by

— [ oo ax- (— [ om0 dx)
/p(X) ln{zg;} dx. (1.113)

This is known as the relative entropy or Kullback-Leibler divergence, or KL diver-
gence (Kullback and Leibler, 1951), between the distributions p(x) and ¢(x). Note
that it is not a symmetrical quantity, that is to say KL(p||q) # KL(¢||p).

We now show that the Kullback-Leibler divergence satisfies KL(p||¢) > 0 with
equality if, and only if, p(x) = ¢(x). To do this we first introduce the concept of
convex functions. A function f(x) is said to be convex if it has the property that
every chord lies on or above the function, as shown in Figure 1.31. Any value of
in the interval from x = a to z = b can be written in the form Aa + (1 — A\)b where
0 < A < 1. The corresponding point on the chord is given by Af(a) + (1 — A) f(b),

KL(pllq)

B Claude Shannon ory. This paper introduced the word ‘bit’, and his con-
B 1916—2001 cept that information could be sent as a stream of 1s

and Os paved the way for the communications revo-

@ After graduating from Michigan and lution. It is said that von Neumann recommended to
MIT, Shannon joined the AT&T Bell Shannon that he use the term entropy, not only be-
Telephone laboratories in 1941. His cause of its similarity to the quantity used in physics,
paper ‘A Mathematical Theory of but also because “nobody knows what entropy really
Communication’ published in the is, so in any discussion you will always have an advan-
Bell System Technical Journal in tage”.

1948 laid the foundations for modern information the-
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Figure 1.31

Exercise 1.36

Exercise 1.38

A convex function f(x) is one for which ev- 4
ery chord (shown in blue) lies on or above f(x)
the function (shown in red).

I\ T

and the corresponding value of the function is f (Aa + (1 — A)b). Convexity then
implies

Fa—+ (1= Mb) < Af(a) + (1= N f(b). (1.114)

This is equivalent to the requirement that the second derivative of the function be
everywhere positive. Examples of convex functions are z In z (for z > 0) and 2. A
function is called strictly convex if the equality is satisfied only for A = O and A = 1.
If a function has the opposite property, namely that every chord lies on or below the
function, it is called concave, with a corresponding definition for strictly concave. If
a function f(x) is convex, then — f(x) will be concave.

Using the technique of proof by induction, we can show from (1.114) that a
convex function f(x) satisfies

M M
/ <Z Aﬂi) < ZMf(iEi) (1.115)
i—1

i=1

where \; > 0 and ), \; = 1, for any set of points {x;}. The result (1.115) is
known as Jensen’s inequality. If we interpret the \; as the probability distribution
over a discrete variable z taking the values {x;}, then (1.115) can be written

[ (E[z]) < E[f(2)] (1.116)

where E[-] denotes the expectation. For continuous variables, Jensen’s inequality
takes the form

f ( / xp(x) dx> < / F(x)p(x) dx. (1.117)

We can apply Jensen’s inequality in the form (1.117) to the Kullback-Leibler
divergence (1.113) to give

KL(p|lq) = —/p(x) ln{q(x)} dx > —ln/q(x) dx =0 (1.118)

p(x)
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where we have used the fact that — In z is a convex function, together with the nor-
malization condition [ ¢(x)dx = 1. In fact, —Inz is a strictly convex function,
so the equality will hold if, and only if, ¢(x) = p(x) for all x. Thus we can in-
terpret the Kullback-Leibler divergence as a measure of the dissimilarity of the two
distributions p(x) and ¢(x).

We see that there is an intimate relationship between data compression and den-
sity estimation (i.e., the problem of modelling an unknown probability distribution)
because the most efficient compression is achieved when we know the true distri-
bution. If we use a distribution that is different from the true one, then we must
necessarily have a less efficient coding, and on average the additional information
that must be transmitted is (at least) equal to the Kullback-Leibler divergence be-
tween the two distributions.

Suppose that data is being generated from an unknown distribution p(x) that we
wish to model. We can try to approximate this distribution using some parametric
distribution ¢(x|@), governed by a set of adjustable parameters 6, for example a
multivariate Gaussian. One way to determine 6 is to minimize the Kullback-Leibler
divergence between p(x) and ¢(x|0) with respect to 6. We cannot do this directly
because we don’t know p(x). Suppose, however, that we have observed a finite set
of training points x,,, for n = 1,..., N, drawn from p(x). Then the expectation
with respect to p(x) can be approximated by a finite sum over these points, using
(1.35), so that

N
L(pllg) = > {—Inq(x,|60) +Inp(x,)} . (1.119)

n=1

The second term on the right-hand side of (1.119) is independent of 8, and the first
term is the negative log likelihood function for @ under the distribution ¢(x|0) eval-
uated using the training set. Thus we see that minimizing this Kullback-Leibler
divergence is equivalent to maximizing the likelihood function.

Now consider the joint distribution between two sets of variables x and y given
by p(x,y). If the sets of variables are independent, then their joint distribution will
factorize into the product of their marginals p(x,y) = p(x)p(y). If the variables are
not independent, we can gain some idea of whether they are ‘close’ to being indepen-
dent by considering the Kullback-Leibler divergence between the joint distribution
and the product of the marginals, given by

p(x,y)llp(x)p(y))

// p(x,y ln< (() ())> dx dy (1.120)

which is called the mutual information between the variables x and y. From the
properties of the Kullback-Leibler divergence, we see that I(x,y) > 0 with equal-
ity if, and only if, x and y are independent. Using the sum and product rules of
probability, we see that the mutual information is related to the conditional entropy
through

I[x,y]

I[x,y] = H[x] — Hx|y] = H[y] — H[y|x]. (1.121)



58 1. INTRODUCTION

Thus we can view the mutual information as the reduction in the uncertainty about x
by virtue of being told the value of y (or vice versa). From a Bayesian perspective,
we can view p(x) as the prior distribution for x and p(x|y) as the posterior distribu-
tion after we have observed new data y. The mutual information therefore represents
the reduction in uncertainty about x as a consequence of the new observation y.

Exercises

1.1

1.2

1.3

1.4

1.5

(») Kl Consider the sum-of-squares error function given by (1.2) in which
the function y(x, w) is given by the polynomial (1.1). Show that the coefficients
w = {w; } that minimize this error function are given by the solution to the following
set of linear equations

M
> Ajw; =T, (1.122)
7=0
where
N N
A = ()™, T = (n)'tn. (1.123)
n=1 n=1

Here a suffix i or j denotes the index of a component, whereas (x)? denotes x raised
to the power of 7.

(x) Write down the set of coupled linear equations, analogous to (1.122), satisfied
by the coefficients w; which minimize the regularized sum-of-squares error function
given by (1.4).

(xx) Suppose that we have three coloured boxes r (red), b (blue), and g (green).
Box r contains 3 apples, 4 oranges, and 3 limes, box b contains 1 apple, 1 orange,
and 0 limes, and box ¢ contains 3 apples, 3 oranges, and 4 limes. If a box is chosen
at random with probabilities p(r) = 0.2, p(b) = 0.2, p(g) = 0.6, and a piece of
fruit is removed from the box (with equal probability of selecting any of the items in
the box), then what is the probability of selecting an apple? If we observe that the
selected fruit is in fact an orange, what is the probability that it came from the green
box?

(x+) Kl Consider a probability density p,.(z) defined over a continuous vari-
able z, and suppose that we make a nonlinear change of variable using x = g(y),
so that the density transforms according to (1.27). By differentiating (1.27), show
that the location % of the maximum of the density in ¥ is not in general related to the
location Z of the maximum of the density over = by the simple functional relation
T = g(y) as a consequence of the Jacobian factor. This shows that the maximum
of a probability density (in contrast to a simple function) is dependent on the choice
of variable. Verify that, in the case of a linear transformation, the location of the
maximum transforms in the same way as the variable itself.

(*) Using the definition (1.38) show that var[f(x)] satisfies (1.39).





