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12.1.

Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli-
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). 1t is also known as the Karhunen-Loéve trans-
form, '

There are two commonly used definitions of PCA that give rise to the same
algorithm. PCA can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defined as
the linear projection that minimizes the average projection cost, defined as the mean
squared distance between the data points and their projections (Pearson, 1901}, The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these definitions in turn.

12.1.1 Maximum varlance formulation

Consider a data set of observations {x,} wheren = 1,...,N, and X, is a
Buclidean variable with dimensionality £. Our goal is to project the data onto a
space having dimensionality M < I} while maximizing the variance of the projected
data, For .the moment, we shall assume that the value of M is given. Later in this
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i chapter, we shall consider techniques to determine an appropriate vatue of M from
the data, _

To begin with, consider the projection onto a one-dimensional space (M = 1),
We can define the direction of this space using a D-dimensional vector uy, which
for convenience {(and without loss of generality) we shall choose to be a unit vector
so that uf u; = 1 (note that we are only interested in the direction defined by u,,
not in the magnitude of 1y itseif). Each data point x,, is then projected onto a scalar
value u] x,,. The mean of the projected data is u} X where X is the sample set mean
given by

x==3 % (12.1)

f and the variance of the projected data is given by

N
% Z {urlrxn - u;r”x"}2 = ul Su, _ 12.2)
n=1

where S is the data covariance matrix defined by

. :
S= -11\7 > (xn ~B)(xn — %) . - (12.3)

n=1

We now maximize the projected variance uf Su; with respect to u;. Clearly, this has
to be a constrained maximization to prevent ju; || — co. The appropriate constraint
comes from the normalization condiiion u'ful = 1. To enforce this constraint,
Appendix E we introduce a Lagrange multiplier that we shall denote by A;, and then make an
unconstrained maximization of o

ug Suy + Ay (1 —ufug). (2.

By setting the derivative with respect to u; equal to zero, we see that this quantity
will have a stationary point when

Su1 = A].'lll

| which says that u; must be an eigenvector of S. It we left-multiply by uf and ma
" use of uj u; = 1, we see that the variance is given by

uySu; = X\

and so the variance will be a maximum when we set u; equal to the eige
having the largest eigenvalue );. This eigenvector is known as the first pii
component. 5

We can define additional principal components in an incremental fas
choosing each new direction to be that which maximizes the projected
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amongst all possible directions orthogonal to those already considered. If we con-
sider the general case of an M -dimensional projection space, the optimal linear pro-
jection for which the variance of the projected data is maximized is now defined by
the M eigenvectors uy, . . . , upy of the data covariance matrix S corresponding to the
M largest cigenvalues Ay, ..., Aps. This is easily shown using proof by induction.

To summarize, principal component analysis involves evaluating the mean X
and the covariance matrix S of the data set and then finding the M eigenvectors of 8
corresponding to the M largest eigenvalues. Algorithms for finding eigenvectors and
eigenvalues, as well as additional theorems related to eigenvector decomposition,
can be found in Golub and Van Loan (1996). Note that the computational cost of
computing the full eigenvector decomposition for a matrix of size D x D is O(D%).
If we plan to project our data onto the first M principal components, then we only
need to find the first M eigenvalues and eigenvectors. This can be done with more
efficient techniques, such as the power method (Golub and Van Loan, 1996), that
scale like O(M D?), or alternatively we can make use of the EM algorithm.

12.1.2 Minimum-error formulation

We now discuss an alternative formulation of PCA based on projection error
minimization. To do this, we introduce a complete orthonormal set of D-dimensional
basis vectors {u;} where i =1, ..., IJ that satisfy

u;ruj = Jij. (12‘7)

Because this basis is complete, each data point can be represented exacily by a linear
combination of the basis vectors

D
K = Z sl (12.8)
i=1

where the coefficients o,; will be different for different data points. This simply
corresponds to a rotation of the coordinate system to a new system defined by the
{u;}, and the original D components {Zn1,...,Z.p} are replaced by an equivalent
set {&n1,. .., @yp}. Taking the inner product with u;, and making use of the or-
thonormality property, we obtain a,; = x,u;, and so without loss of generality we
can write

D
Xp = E (xFu;) . (12.9)
i=1

Our goal, however, is to approximate this data point using a representation in-
volving a restricted number M < D of variables corresponding to a projection onto
a lower-dimensional subspace. The M-dimensional linear subspace can be repre-
sented, without loss of generality, by the first M of the basis vectors, and so we
approximate each data point x,, by

M D
Rp = sz-ui + Z biu; (12.10)
i=1 i=M+1
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where the {z,;} depend on the particular data point, whereas the {b;} are constants
that are the same for all data points, We are free to choose the {u;}, the {2,;}, and
the {b;} so as to minimize the distortion introduced by the reduction in dimenstonat-
ity. As our distortion measure, we shall use the squared distance between the original
data point x,, and its approximation X,,, averaged over the data set, so that our goal
is to minimize

N
1 _ .
=5 Eﬂj s — Xall® (12.11)

i Consider first of all the minimization with respect to the quantities {z,;}. Sub-
: stituting for X,,, setting the derivative with respect to z,; to zero, and making use of
the orthonormality conditions, we obtain

where 7 = 1,..., M. Similarly, setting the derivative of J with respect to b; to zero,

il

' ’i Zng = Xp 1 (12.12)
i,
! and again making use of the orthonormality rclations, gives

by =X uy (12.13)

where § = M -+1,..., D. If we substitute for zy; and b;, and make use of the general
expansion (12.9), we obtain

D
Xn—Fn= Y, {(tn—F)Tw}u (12.14)
i=M+1

from which we see that the displacement vector from X, 1o X, lies in the space
orthogonal to the principal subspace, because it is a linear combination of {u;} for
li: i=M+1,...,D, as illustrated in Figure 12,2, This is to be expected because the

i projected points X, must lie within the principal subspace, but we can move them

! freely within that subspace, and so the minimum error is given by the orthogonal . -
: projection. 7 e
i We therefore obtain an expression for the distortion measure J as a function -
it purely of the {u;} in the form

J E 12 i T D - i
1 J = }—V-Z: - Z (xnu,; - X u,-) = . Z u; Su;. (12.15)
! n=1{=M-+1 i=M+1

There remains the task of minimizing .J with respect to the {u;}, which mu:
be a constrained minimization otherwise we will obtain the vacuous result u; =
The constraints arise from the orthonormality conditions and, as we shall see,
solution will be expressed in terms of the eigenvector expansion of the covarl
matrix. Before considering a formal solution, let us try (o obtain some intuition ab
the result by considering the case of a two-dimensional data space 1) = 2 and a
dimensional principal subspace M = 1. We have to choose a direction uy 80,
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minimize J = ul Suy, subject to the normalization constraint uz vy = 1. Using a
Lagrange maltiplier A7 to enforce the constraint, we consider the minimization of

J=ulSuy + A (1 —ujuy). (12.16)

Setting the derivative with respect 1o uy to zero, we obtain Suy = Aqus so that uy
is an eigenvector of S with eigenvalue A;. Thus any eigenvector will define a sta-
tionary point of the distortion measure. To find the value of J at the minimum, we
back-substitute the solution for ug into the distortion measure to give J = Ay. We
therefore obtain the minimum value of .J by choosing u; to be the eigenvector corre-
sponding to the smaller of the two eigenvalues. Thus we should choose the principal
subspace to be aligned with the eigenvector having the larger eigenvalue. This result
accords with our intuition that, in order to minimize the average squared projection
distance, we should choose the principal component subspace to pass through the
mean of the data points and to be aligned with the directions of maximurn variance,
For the case when the eigenvalues are equal, any choice of principal direction will
give rise to the same value of J.

The general solution to the minimization of J for arbitrary D and arbitrary M <
D is obtained by choosing the {u;} to be eigenvectors of the covariance matrix given
by

Suz- = )\,-ui (12.17)

where i = 1,..., D, and as usual the eigenvectors {u;} are chosen to be orthonor-
mal. The corresponding value of the distortion measure is then given by

D
J= 3 X (12.18)

i=M+1

which is simply the sum of the eigenvalues of those eigenvectors that are orthogonal
to the principal subspace. We therefore obtain the minimum value of .J by selecting
these eigenvectors to be those having the D — M smallest eigenvalues, and hence
the eigenvectors defining the principal subspace are those corresponding to the M
largest eigenvalues.

Although we have considered M < D, the PCA analysis still holds if M =
I}, in which case there is no dimensionality reduction but simply a rotation of the
coordinate axes to align with principal components.

Finally, it is worth noting that there exists a closely related lincar dimensionality
reduction technique called canonical correlation analysis, or CCA (Hotelling, 1936;
Bach and Jordan, 2002). Whereas PCA works with a single random variable, CCA
considers two (or more) variables and tries to find a corresponding pair of linear
subspaces that have high cross-correlation, so that each component within one of the
subspaces is correlated with a single component from the other subspace. Its solution
can be expressed in terms of a generalized eigenvector problem,

12.1.3 Applications of PCA

‘We can illustrate the use of PCA for data compression by considering the off-
line digits data set. Because cach eigenvector of the covariance matrix is a vector
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Mean Ay = 3.4 108 Ag = 2.8. 105 s =24.10° As=16.10

Figure 12.3 The mean vector x along with the first four PCA eigenvectors ua, ..., us for the off-line
digits data set, together with the corresponding eigenvalues.

in the original D-dimensional space, we can reptesent the eigenvectors as images of
the same size as the data points. The first five eigenvectors, along with the corre-
sponding eigenvalues, are shown in Figure 12.3. A plot of the complete spectrom of
eigenvalues, sorted into decreasing order, is shown in Figure 12.4(a). The distortion
measure J associated with choosing a particular value of M is given by the sum
of the eigenvalues from M + 1 up to D and is plotted for different values of M in
Figure 12.4(b). -

If we substitute (12.12) and (12.13) into (12.10), we can write the PCA approx-
imation to a data vector x,, in the form

{ M D
il Xo o= Y (gudu+ Y (Zugu (12.19)
l i=1 i=Mi
i M
X+ Z (x;{uz- - fTug) 1 {12.20)
i=1

.

0 200 400 600 i 0 200 400 600 M
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Figure 12.4 (a) Plot of the eigenvalue spectrum for the off-line digits data set. {b) Plot of the sum,
discarded eigenvaiues, which represents the sum-of-squares distortion J introduced by projecting the dat
a principal component subspace of dimensionality M.
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Qriginal

Figure 12.5  An original example from the off-line digits data set together with its PCA reconstructions
obtained by retaining A principal components for various values of M. As M Increases
the reconstruction becomes more accurate and would become perfect when M = D =
28 x 28 = 784,

where we have made use of the relation

R |
=) (F'w)u (12.21)

i=1

which follows from the completeness of the {u;}. This represents a compression
of the data set, because for each data point we have replaced the D-dimensional
vector X, with an M-dimensional vector having components (xg‘ui - ETui). The
smaller the value of M, the greater the degree of compression. Examples of PCA
reconstructions of data points for the digits data set are shown in Figure 12.5.
Another application of principal component analysis is to data pre-processing.
In this case, the goal is not dimensionality reduction but rather the transformation of
a data set in order to standardize certain of its properties. This can be important in
allowing subsequent pattern recognition algorithms to be applied successfully to the
data set. Typically, it is done when the original variables are measured in various dif-
ferent units or have significantly different variability. For instance in the Old Faithful

Appendix A data set, the time between eruptions is typically an order of magnitude greater than
the duration of an eruption. When we applied the K-means algorithm to this data
Section 9.1 set, we first made a separate linear re-scaling of the individual variables such that

each variable had zero mean and unit variance. This is known as standardizing the
data, and the covariance matrix for the standardized data has components

YN F; aj
n=1

where ¢; is the variance of x;. This is known as the correlation matrix of the original
data and has the property that if two components z; and z; of the data are perfectly
correlated, then p;; = 1, and if they are uncorrelated, then p;; = 0.

However, using PCA we can make a more substantial normalization of the data
to give it zero mean and unit covariance, so that different variables become decorre-
lated. To do this, we first write the eigenvector equation (12. 17} in the form

SU = UL ‘ (12.23)
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. Figure 12,6 lllustration of the effects of linear pre-processing applied to the Old Faithiul data set. The plot on
the left shows the original data. The centre plot shows the result of standardizing the individual variables to zero
mean and unit variance. Also shown are the principal axes of this normalized data set, plotted over the range

i)&’ 2, The plot on the right shows the result of whitening of the data to give it zero mean and unit covariance.

where L is a D x D diagonal matrix with elements A;, and U is a D x D orthog-
onal matrix with columns given by u;. Then we define, for each data point X, a
transformed value given by

ya = L2707 (%, — %) (12.24)

where X is the sample mean defined by (12.1). Clearly, the set {yn} has zero mean,
and its covariance is given by the identity matrix because

N N
1 1 _ o . _
=3yt = 5 2L LU - ) — B TULT
n=1

n=1

; . = L—I/Z-U'TSULﬁlfQ — L—l/ZLL—1/2 =T (12.25) - .

This operation is known as whitening or sphereing the data and is illustrated for the
Appendix A 01d Faithful data set in Figure 12.6. o
It is interesting to compare PCA with the Fisher linear discriminant which was |
' discussed in Section 4.1.4. Both methods can be viewed as techniques for finear
dimensionality reduction. However, PCA is unsupervised and depends only on th
values x,, whereas Pisher linear discriminant also uses class-label information. Thi

! difference is highlighted by the example in Figure 12.7.
! Another common application of principal component analysis is to data visua
ization. Here cach data point is projected onto a two-dimensional (M = 2) principal.
subspace, so that a data point X, is plotted at Cartesian coordinates given by x
: and x_ 1, where uy and u; are the eigenvectors corresponding to the largest an
Appendix A second largest eigenvalues. An example of such a plot, for the oil flow data se
shown in Figure 12.8.
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A comparison of principal compo- — —
nent analysis with Fisher's linear 151 )

discriminant for linear dimension- 1+ ISR T PO .

ality reduction. Here the data in 4| ° T I Ay e

two dimensions, belonging to two : N R

classes shown in red and blue, is 0.5t O B

to be projected onto a single di- 0 \ ;
mension. PCA chooses the direc- O \
tion of maximum variance, shown -0.5}. e i . 1
by the magenta curve, which leads ] . N A I
to strong class overlap, whereas T T R A
the Fisher linear discriminant takes _1.5| SR I

account of the class labels and
leads to a projsction onto the green  —2 _ . 5
eurve giving much better class
separation.

Visualization of the oil flow data set obtained
by projecting the data onto the first two prin-
cipal components. The red, blue, and green
points correspond io the 'laminar’, homo-
geneous’, and ‘annular’ flow configurations
respectively.

12.1.4 PCA for high-dimensional data

In some applications of principal component analysis, the number of data points
is smaller than the dimensionality of the data space. For example, we might want to
apply PCA to a data set of a few hundred images, each of which corresponds to a
vector in a space of potentially several million dimensions (corresponding to three
colour values for each of the pixels in the image). Note that in a D-dimensional space
a set of N points, where N < D), defines a linear subspace whose dimensionality
is at most V - 1, and so there is little point in applying PCA for values of M
that are greater than ¥V — 1. Indeed, if we perform PCA we will find that at least
D — N + 1 of the eigenvalues are zero, corresponding to eigenvectors along whose
directions the data set has zero variance. Furthermore, typical algorithms for finding
the eigenvectors of a D x D matrix have a computational cost that scales like O{D3),
and so for applications such as the image example, a direct application of PCA will
be computationaily infeasible.

We can resolve this problem as follows. First, let us define X to be the (N x D)-
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dimensional centred data matrix, whose nt" row is given by (x,, —X)T. The covari-
ance matrix (12.3) can then be written as § = N XTX, and the corresponding
eigenvector equation becomes

. .
ﬁXTXuz- = )\,vui. (1226)
Now pre-multiply both sides by X to give
1
ﬁXXT(Xui) = A(Xu). (12.27)
If we now define v; = Xu;, we obtain
1 .
FV—XXTvi = Ay (12.28)

which is an eigenvector equation for the N x N matrix NXXT, We sce that this
has the same IV — 1 eigenvalues as the ori ginal covariance matrix (which itself has an
additional I - IV 4 1 eigenvalues of value zero). Thus we can solve the eigenvector
problem in spaces of lower dimensionality with computational cost O(N3) instead
of O(D?). In order to determine the eigenvectors, we multiply both sides of (12.28)
by X7 to give

(%XTX) (XTv;) = M(XTv;) (12.29)
from which we see that (XTv;) is an eigenvector of S with cigenvalue \;, Note,
however, that these eigenvectors need not be normalized. To determine the appropri-
ate normalization, we re-scale 1; x X" v; by a constant such that flas|] = 1, which,
assuming v; has been normalized to unit length, gives

1

— Ty,
= WX Vi. (1230)

1
In summary, to apply this approach we first evaluate XX7T and then find its eigen-
vectors and eigenvalues and then compute the eigenvectors in the original data space
using (12.30).




