14.3.

Boosting

Boosting is a powerful technique for combining multiple ‘base’ classifiers to produce
a form of committee whose performance can be significantly better than that of any
of the base classifiers. Here we describe the most widely used form of boosting
algorithn called AdaBoost, short for ‘adaptive boosting’, developed by Freund and

classifiers are known as weak learners. Originally desi gned for solving classification
problems, boosting can also be extended to regression (Friedman, 2001).

The principal difference between hoosting and the commitee methods such as
bagging discussed above, is that the base classifiers are trained in sequence, and
each base classifier is trained using a weighted form of the data set in which the
weighting coefficient associated with each data point depends on the performance
of the previous classifiers, In particular, points that are misclassified by one of the
base classifiers are given greater weight when used fo train the next classifier in
the sequence. Once all the classifiers have been trained, their predictions are then
combined through a weighted majority voting scheme, as illustrated schematically
in Figure 14.1,

Consider a two-class classification problem, in which the training data comprises
input vectors x;, , . , » Xiv along with corresponding binary target variables t1,.. .ty

658

14. COMBINING MODELS

Figure 14.1

Schematie illustration of the
boosting framework. Each v
base classifier y. {x) is trained

on a weighted form of the train-
ing set (btue arrows) In which e e s
the weights w(™ depend on

the performance of the pre-
vious base classifier ym_1(x) ¥ (=) ya(x) ya{x)

(green arrows). Once all base
classifiers have been trained,
they are combined to give

the final classifier Yas(x) (red
arrows). M
Yar (x) = sign (Z Um¥Ym (X))
m

AdaBoost

1. Initialize the data weighting coefficients {w,} by setting wl =1 /N for
n = 1 N . i

2. Formzl,...,M:

(a) Fit a classifier 7, {x) to the iraining data by minimizing the weighted
error function

N
I =Y W (ym(%n) # tn) (14.15)

where I(ym(xn) # £,) is the indicator function and equals 1 when
Ym(Xn) # t, and 0 otherwise.

(b) Evaluate the quantitics

N
S W Hym(xn) # t)
_. n=1

Em = I
S ufe
n=1

and then use these to evaluate

(o)
o =In .
€m

(c) Update the data weighting coefficients

w,{,,m-{-l) _ w;m) exp {amI(ym(Xn) # tn)}

T

Section 14.4

14.3. Boosting 659

3. Make predictions using the final model.-which is given by

m=1

u .
Yar(x) = sign (> o:mym(x)) : (14.19)

We sce that the first base classifier y, (x) is trained using weighting coeffi-

cients S that are all equal, which therefore corresponds to the usual procedure
for training a single classifier. From (14.18), we see that in subsequent iterations
the weighting coefficients w{™ are increased for data points that are misclassified
and decreased for data points that are correctly classified. Successive classifiers are
therefore forced to place greater emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be misclassified by successive
classifiers receive ever greater weight. The quantities ¢, represent weighted mea-
sures of the error rates of each of the base classifiers on the data set. We therefore
see that the weighting coefficients o, defined by (14.17) give greater weight to the
more accurate classifiers when computing the overall output given by (14.19).

The AdaBoost algorithm is illustrated in Figure 14.2, using a subset of 30 data
points taken from the toy classification data set shown in Figure A.7. Here each base
learners consists of a threshold on one of the input variables. This simple classifier
corresponds to a form of decision tree known as a ‘decision stumps’, i.e., a deci-
sion tree with a single node. Thus each base learner classifies an input according to
whether one of the input features exceeds some threshold and therefore simply parti-
tions the space into two regions separated by a linear decision surface that is paraifel
to one of the axes.

14.3.1 Minimizing exponential error

Boosting was originally motivated using statistical leaming theory, leading to
upper bounds on the generalization error. However, these bounds turn out to be too -
loose to have practical value, and the actual performance of boosting is much better
than the bounds alone would suggest. Friedman et al. (2000) gave a different and
very simple interpretation of boosting in terms of the sequential minimization of an
exponential error function.

Consider the exponential error function defined by

N
B =>"exp{—tnfm(xn)} (14.20)
n=1

where fi, (x) is a classifier defined in terms of a linear combination of base classifiers
wi{x) of the form

Fm() =5 a(x) (1421)
=1

and t,, € {—1,1} are the training set target values. Our goal is to minimize ¥ with
respect to both the weighting coefficients ¢ and the parameters of the base classifiers

yi(x).

660

14, COMBINING MODELS

Instead of doing a global error function minimization, however, we shall s
pose that the base classifiers y1(x), .. ., ¥m-1(x) are fixed, as are their coefficie
011y - -+ U1, and sO we are minimizing only with respect to a,,, and ¥, (x).:Sep
arating off the contribution from base classifier ,,,(x), we can then write the’

function in the form

B

where the coefficients wsgm)

N
Z exp

n=1
N
= Z wi™ exp
n=1i

{ ~t fon1(%n) — %tnamym(xn)}

= exp{—tnfm—1(Xn)} can be viewed as
because we are optimizing only o, and ,,(x). If we denote by 7,

data points that are comectly classified by ¥,,(x), and if we denote the e
misclassified points by M,,, then we can in turn rewrite the error fui

{— ‘;‘tnam'ym (%x) }

20 00 m=1 2, 1 ?, m=2 2f, m=3
o] 00 < y 0 « o F
% |O %o e
0 Q c 9 o L O N 0 - O
® 9 ©0 ° S g o
O ° Yol ‘o |
B I e A I N A
. . i o -
-1 0 1 2 -1 0 1 2 -1 6 1
21 T m=6 2r, T m=10 2r m = 150
. L) * L] L) Mo
. .
o0 — — v—— — @"‘ - 4] B @— O * 0
. o . [s]
o P T O'Hoh_ -
o Q° ' é_;a o
-2 i -2 o . -2
-1 0 1 2 -1 0 1 2 -1
Figure 14.2 [lustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base Iearners irained so far, along with the decision
boundary of the most recent base learner {dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to

that data point when training the most recently added base learner. Thus, for instance, we see that points that i
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner, L

FExercise 14.6

Exercise 147

14.3. Boosting 661

form
Bo= ey afm petm/2 N7 gfm)
n€Ty, neMq,
N N
= (@ e) Y (Y (n) £) + €Yl
n=1 ' n=1

(14.23)

When we minimize this with respect to Ym{X), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to ¢,,,, we obtain (14.17) in which ¢, is defined
by (14.16).

From (14.22) we see that, having found e, and Umfx), the weights on the data
points are updated using

1
w,ﬁm“) = w,(;m) exXp {—Etna’mym(xn)} : (14.24)

Making use of the fact that
tnYm (%n) = 1 — 21 (Y (xn) # tn) (14.25)
we see that the weights w™ are updated at the next iteration using
w{™H = w{™ exp(—oim/2) éxp {omI(ym (%) # ta)} . (14.26)

Because the term exp(—a,,/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18),

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to {14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting

The exponential error function that is minimized by the AdaBoost algorithm
differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Basler{ 00 = Y [enl-wtaltpedx. 1427

If we perform a variational minimization with respect to all possible functions y(x),

y(x) = %In {_p (=10 } (14.28)

we obtain

p(t = ~1|x)

662 14. COMBINING MODELS

Figure 14.3 Plot of the exponential {green) and

Section 7.1.2

Exercise 14.8

Section 4.3.4

Exercise 14.9

f 3
rascaled cross-entropy (red) error B(z)

functions along with the hinge er-
ror (blue} used in support vector
machines, and the misclassification
error {black). Note that for large
negative values of z = ¢y(x), the
cross-entropy gives a lineatly in-
creasing penalty, whereas the expo-
nential loss gives an exponentially in-
creasing penalty.

-2 -1 0 1 2

which is half the log-odds. Thus the AdaBoost algorithm is seeking the best approx-
imation to the log odds ratio, within the space of functions represented by the linear
combination of base classifiers, subject to the constrained minimization resulting
from the sequential optimization strategy. This result motivates the use of the sign
function in (14.19) to arrive at the final classification decision.

We have already seen that the minimizer y(x) of the cross-entropy error (4.90)
for two-class classification is given by the posterior class probability. In the case
of a target variable £ € {—1,1}, we have seen that the error function is given by .
In(1 + exp(—yt)). This is compared with the exponential error function in Fig-- "
ure 14.3, where we have divided the cross-entropy error by a constant factor In(2). 7 -
so that it passes through the point {0, 1) for ease of comparison. We sce that both
can be seen as continuous approximations to the ideal misclassification error func
tion. An advantage of the exponential error is that its sequential minimization lead
to the simple AdaBoost scheme. One drawback, however, is that it penahzes tar,
negative values of ty(x) much more strongly than cross-entropy. In particular,
see that for large negative values of ¢y, the cross-entropy grows linearly with:
whereas the exponential error function grows exponentially with |[ty]. Thus the
ponential error function will be much less robust to outliers or misclassified
points. Another important difference between cross-entropy and the exponentia
ror function is that the latter cannot be interpreted as the log kikelihood fu ctio
any well-defined probabilistic model. Furthermore, the exponential error doe;
generalize to classification problems having K > 2 classes, again in contr
cross-entropy for a probabilistic model, which is easily generalized to give.

The interpretation of boosting as the sequential optimization of an additi
under an exponential error (Friedman et al., 2000) opens the door to:a
of boosting-like algorithms, including multiclass extensions, by alterin
of error function. It also motivates the extension to regression problems
2001). If we consider a sum-of-squares error function for regression, the
minimization of an additive model of the form (14.21) simply involv
new base classifier to the residual errors ¢, — f,,,—1{x,,} from the previou
we have noted, however, the sum-of-squares error is not robust to

- ' ' T 14.4. Tree-based Models 663

Figure 14.4 Comparison of the squared error

1 {green) with the absolute error (red) E(z)
showing how the latter places much
less emphasis on large errors and
hence is more robust to outliers and
. mislabelled daia points.
| -1 0 1 z

can be addressed by basing the boosting algorithm on the absolute deviation |y — ¢
instead. These two error functions are compared in Figure 14.4.)

