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Figure 14.4 Comparison of the squared error
(green) with the absolute error (red)
showing how the latter places much
less emphasis on large errors and
hence is more robust to outliers and
mislabelled data points.
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can be addressed by basing the boosting algorithm on the absolute deviation |y − t|
instead. These two error functions are compared in Figure 14.4.

14.4. Tree-based Models

There are various simple, but widely used, models that work by partitioning the
input space into cuboid regions, whose edges are aligned with the axes, and then
assigning a simple model (for example, a constant) to each region. They can be
viewed as a model combination method in which only one model is responsible
for making predictions at any given point in input space. The process of selecting
a specific model, given a new input x, can be described by a sequential decision
making process corresponding to the traversal of a binary tree (one that splits into
two branches at each node). Here we focus on a particular tree-based framework
called classification and regression trees, or CART (Breiman et al., 1984), although
there are many other variants going by such names as ID3 and C4.5 (Quinlan, 1986;
Quinlan, 1993).

Figure 14.5 shows an illustration of a recursive binary partitioning of the input
space, along with the corresponding tree structure. In this example, the first step

Figure 14.5 Illustration of a two-dimensional in-
put space that has been partitioned
into five regions using axis-aligned
boundaries.
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Figure 14.6 Binary tree corresponding to the par-
titioning of input space shown in Fig-
ure 14.5.
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divides the whole of the input space into two regions according to whether x1 � θ1

or x1 > θ1 where θ1 is a parameter of the model. This creates two subregions, each
of which can then be subdivided independently. For instance, the region x1 � θ1

is further subdivided according to whether x2 � θ2 or x2 > θ2, giving rise to the
regions denoted A and B. The recursive subdivision can be described by the traversal
of the binary tree shown in Figure 14.6. For any new input x, we determine which
region it falls into by starting at the top of the tree at the root node and following
a path down to a specific leaf node according to the decision criteria at each node.
Note that such decision trees are not probabilistic graphical models.

Within each region, there is a separate model to predict the target variable. For
instance, in regression we might simply predict a constant over each region, or in
classification we might assign each region to a specific class. A key property of tree-
based models, which makes them popular in fields such as medical diagnosis, for
example, is that they are readily interpretable by humans because they correspond
to a sequence of binary decisions applied to the individual input variables. For in-
stance, to predict a patient’s disease, we might first ask “is their temperature greater
than some threshold?”. If the answer is yes, then we might next ask “is their blood
pressure less than some threshold?”. Each leaf of the tree is then associated with a
specific diagnosis.

In order to learn such a model from a training set, we have to determine the
structure of the tree, including which input variable is chosen at each node to form
the split criterion as well as the value of the threshold parameter θi for the split. We
also have to determine the values of the predictive variable within each region.

Consider first a regression problem in which the goal is to predict a single target
variable t from a D-dimensional vector x = (x1, . . . , xD)T of input variables. The
training data consists of input vectors {x1, . . . ,xN} along with the corresponding
continuous labels {t1, . . . , tN}. If the partitioning of the input space is given, and we
minimize the sum-of-squares error function, then the optimal value of the predictive
variable within any given region is just given by the average of the values of tn for
those data points that fall in that region.Exercise 14.10

Now consider how to determine the structure of the decision tree. Even for a
fixed number of nodes in the tree, the problem of determining the optimal structure
(including choice of input variable for each split as well as the corresponding thresh-



14.4. Tree-based Models 665

olds) to minimize the sum-of-squares error is usually computationally infeasible due
to the combinatorially large number of possible solutions. Instead, a greedy opti-
mization is generally done by starting with a single root node, corresponding to the
whole input space, and then growing the tree by adding nodes one at a time. At each
step there will be some number of candidate regions in input space that can be split,
corresponding to the addition of a pair of leaf nodes to the existing tree. For each
of these, there is a choice of which of the D input variables to split, as well as the
value of the threshold. The joint optimization of the choice of region to split, and the
choice of input variable and threshold, can be done efficiently by exhaustive search
noting that, for a given choice of split variable and threshold, the optimal choice of
predictive variable is given by the local average of the data, as noted earlier. This
is repeated for all possible choices of variable to be split, and the one that gives the
smallest residual sum-of-squares error is retained.

Given a greedy strategy for growing the tree, there remains the issue of when
to stop adding nodes. A simple approach would be to stop when the reduction in
residual error falls below some threshold. However, it is found empirically that often
none of the available splits produces a significant reduction in error, and yet after
several more splits a substantial error reduction is found. For this reason, it is com-
mon practice to grow a large tree, using a stopping criterion based on the number
of data points associated with the leaf nodes, and then prune back the resulting tree.
The pruning is based on a criterion that balances residual error against a measure of
model complexity. If we denote the starting tree for pruning by T0, then we define
T ⊂ T0 to be a subtree of T0 if it can be obtained by pruning nodes from T0 (in
other words, by collapsing internal nodes by combining the corresponding regions).
Suppose the leaf nodes are indexed by τ = 1, . . . , |T |, with leaf node τ representing
a region Rτ of input space having Nτ data points, and |T | denoting the total number
of leaf nodes. The optimal prediction for region Rτ is then given by

yτ =
1

Nτ

∑
xn∈Rτ

tn (14.29)

and the corresponding contribution to the residual sum-of-squares is then

Qτ (T ) =
∑

xn∈Rτ

{tn − yτ}2
. (14.30)

The pruning criterion is then given by

C(T ) =
|T |∑
τ=1

Qτ (T ) + λ|T | (14.31)

The regularization parameter λ determines the trade-off between the overall residual
sum-of-squares error and the complexity of the model as measured by the number
|T | of leaf nodes, and its value is chosen by cross-validation.

For classification problems, the process of growing and pruning the tree is sim-
ilar, except that the sum-of-squares error is replaced by a more appropriate measure
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of performance. If we define pτk to be the proportion of data points in region Rτ

assigned to class k, where k = 1, . . . , K, then two commonly used choices are the
cross-entropy

Qτ (T ) =
K∑

k=1

pτk ln pτk (14.32)

and the Gini index

Qτ (T ) =
K∑

k=1

pτk (1 − pτk) . (14.33)

These both vanish for pτk = 0 and pτk = 1 and have a maximum at pτk = 0.5. They
encourage the formation of regions in which a high proportion of the data points are
assigned to one class. The cross entropy and the Gini index are better measures than
the misclassification rate for growing the tree because they are more sensitive to the
node probabilities. Also, unlike misclassification rate, they are differentiable andExercise 14.11
hence better suited to gradient based optimization methods. For subsequent pruning
of the tree, the misclassification rate is generally used.

The human interpretability of a tree model such as CART is often seen as its
major strength. However, in practice it is found that the particular tree structure that
is learned is very sensitive to the details of the data set, so that a small change to the
training data can result in a very different set of splits (Hastie et al., 2001).

There are other problems with tree-based methods of the kind considered in
this section. One is that the splits are aligned with the axes of the feature space,
which may be very suboptimal. For instance, to separate two classes whose optimal
decision boundary runs at 45 degrees to the axes would need a large number of
axis-parallel splits of the input space as compared to a single non-axis-aligned split.
Furthermore, the splits in a decision tree are hard, so that each region of input space
is associated with one, and only one, leaf node model. The last issue is particularly
problematic in regression where we are typically aiming to model smooth functions,
and yet the tree model produces piecewise-constant predictions with discontinuities
at the split boundaries.

14.5. Conditional Mixture Models

We have seen that standard decision trees are restricted by hard, axis-aligned splits of
the input space. These constraints can be relaxed, at the expense of interpretability,
by allowing soft, probabilistic splits that can be functions of all of the input variables,
not just one of them at a time. If we also give the leaf models a probabilistic inter-
pretation, we arrive at a fully probabilistic tree-based model called the hierarchical
mixture of experts, which we consider in Section 14.5.3.

An alternative way to motivate the hierarchical mixture of experts model is to
start with a standard probabilistic mixtures of unconditional density models such as
Gaussians and replace the component densities with conditional distributions. HereChapter 9
we consider mixtures of linear regression models (Section 14.5.1) and mixtures of




