
4 


In the previous chapter, we explored a class of regression models having particularly 
simple analytical and computational properties. We now discuss an analogous class 
of model s for solving classification problems. The goal in c lassification is to take an 
input vector x and to assign it to one of K discrete classes C!, where k = 1, ... ,K. 
In the most common scenario, the classes are taken to be disjoint, so that each input is 
assigned to one and only one class. The input space is thereby divided into decision 
regions whose boundaries are called decision boundaries or decision surface.,. In 
this chapter, we consider linear models for classification, by which we mean that the 
decision surfaces are linear functions of the input vector x and hence are defined 
by (D - I )-dimensional hyperplanes within the D-dimensional input space. Data 
sets whose classes can be separated exactly by linear decision surfaces are said to be 
linearly separable. 

For regression problems, the target variable t was simply the vector of real num­
bers whose values we wish to predict. In the case of classification, there are various 

.... 
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180 4. LINEAR MODELS FOR CLASSIFICATION 

ways of using target values to represent class labels. For probabilistic models, the 
most convenient, in the case of two-class problems, is the binary representation in 
which there is a single target variable I E {O, I} such that t = 1 represenLs class C, 
and t = 0 represents c lass C2 . We can interpret the value of t as the probability that 
the class is C" with the values of probability taking only the extreme values of 0 and 
1. For J( > 2 classes, it is convenient to use a I-of-I( coding scheme in which t is 
a vector of length I( such that if the class is Cj , then all elements I k of t arc zero 
except element/'j , which takes the value 1. For instance, if we have 1{ = 5 classes. 
then a patlem from class 2 would be given the target vector 

t = (0, I , O. 0 , O)T (4.1) 

• 
Again. we can interpret the value of t k as the probability that the class is Ck- For 
nonprobabilistic models, alternative choices of target variable representation wil l 
sometimes prove convenient. 

4.1.In Chapter I, we identified three distinct approaches to the classification prob­
lem. The simplest involves constructing a discrimillQm function that directly assigns 
each vector x to a specific class. A more powerful approach, however. models the 
conditional probability distribution p(Ck lx ) in an inference stage, and then subse­
quently uses this distribution to make optima) decisions. By separating inference 
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There arc 
two different approaches to determining the conditional probabilities p(Cklx). One 
technique is to model them direcLly, for example by representing them as parametric 
models and then optimizing the parameters using a training set. Alternatively, we 
can adopt a generative approach in which we model the class-conditional densities 
given by p(x ICk ) , together with the prior probabilities P(Ck) for the classes, and then 
we compute the required posterior probabilities using Bayes' theorem 

(4.2) 

We shall discuss examples of all three approaches in this chapter. 
In the linear regression models considered in Chapter 3, the model prediction 

y( x, w) was given by a linear function of the parameters w. Tn the simp l c~t case, 
the model is also linear in the input variables and therefore takes thc form Vex) = 

w T X + Woo so that y is a rcal number. For classification problem~ , however. we wish 
to predict discrete class labels, or more generally posterior probabilities that lie in 
the range (0 , J). To achieve this , we consider a generalization or this model in which 
we transform the linear function of w using a nonlinear function I ( . ) so that 

(4.3) 

In the machine learning literature f ( . ) is known as an activation jUl/ction , whereas 
its inverse is called a lillkJunctioll in the stati stics literature. The decision surfaces 
correspond to Vex ) = const a llt, so that w T x + Wo = const ant and hence the deci­
sion surfaces are linear functions ofx. even if the runction 10 is nonlinear. For this 
reason, the class of models described by (4.3) are called gelleralized fillear 1II0dels 
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,ilistic models, the 	 (McCullagh and Neider, 1989). Note, however, that in contrast to the models used 
y representation in for regression, they are no longer linear in the parameters due to the presence of the 
represents class C, nonlinear function f (·). This will lead to more complex analytical and computa­
he probability that tional properties than for linear regression models. Nevertheless, these models are 
me values of 0 and still relatively simple compared to the more general nonlinear models that will be 
heme in which t is studied in subsequent chapters. 
Its tk of t are zero The algorithms discussed in this chapter will be equally applicable if we first 
Ive J( = 5 classes, make a fixed nonlinear transformation of the input variables using a vector of basis 

functions q, (x ) as we did for regression models in Chapter 3. We begin by consider­
ing classification directly in the original input space x, while in Section 4.3 we shall 

(4.1) find it convenient to switch to a notation involving basis functions for consistency 
with later chapters.

Ie class is Ck . For 
'cpresentation wi II 

4.1. Discriminant Functions :lassification prub­ ------=..:.~ 
!at directly assigns 

wever, models the A discriminant is a function that takes an input vector x and assigns it to one of J( 


" and then subsc­ classes, denoted Ck. rn this chapter, we shall restrict attention to linear discriminlll1ls, 

parating inference namely those for which the decision surfaces are hyperplanes. To simplify the dis­

" 1.5.4. There are cussion, we consider first the case of two classes and then investigate the extension 

Ities p(Cklx). One 	 to J( > 2 classes. 

hem as parametric 

4.1.1 Two classesAlternatively, we 
nditional densities The simplest representation of a linear discriminant function is obtained by tak­
e classes, and then ing a linear function of the input vector so that 
Ifem 

y(x ) = wTx + Wo 	 (4.4) 

(4.2) where w is called a weight vector, and Wo is a bias (not to be confused with bias in 
the statistical sense). The negative of the bias is sometimes called a threshold. An 
input vector x is assigned to class C, if y(x ) ;:" 0 and to class C2 otherwise. The cor­

model prediction responding decision boundary is therefore defined by the relation y(x ) = 0, which 
the simplest case, corresponds to a (D - i )-dimensional hyperplane within the D-dimensional input 
the form y(x ) = space. Consider two points X A and XR both of which lie on the decision surface. 

however, we wish Because y( XA) = y( XR ) = 0, we have w'l' (XA - XB) = 0 and hence the vector w is 
Ibilities that lie in olthogonal to every vector lying within the decision surface, and so w determines the 
lis model in which orientation of the decision surface. Similarly, if x is a point on the decision surface, 
' ( . ) so that 	 then Vex) = 0, and so the normal distance from the origin to the decision surface is 

given by 
(4.3) 	 W 'I'X Wo (4.5)-Rfunction , whereas 	 Ilw ll 

decision surfaces We therefore see that the bias parameter 1I!o determines the location of the decision 
ld hence the dcci­ surface. These properties are illustrated for the case of D = 2 in Figure 4.1. 
lonlinear. For this F1111hermore, we note that the value of !l ex ) gives a signed measure of the per­
zed linear models pendicular distance .,. of the point x from the decision surface. To sec this, consider 
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Figure 4.1 Illustration of the geometry of a 
y > O linear discriminant function in two dimensions. 

The decision surface, shown in red, is perpen­ y = O 
dicular to w . and its displacement from the y < O 
origin is controlled by the bias parameter woo 
Also. the signed orthogonal distance of a gen­
eral point x from the decision surface is given 
by y(x )/lIw ll . 

x 

c
,
\ / 

~nOl 

an arbitrary point x and let x l. be its orthogonal projection onto the decision surface, 
so that w 

(4.6)x = x l. + " llwll' 
Multiplying both sides of this result by w T and adding wo , and making use ofy(x ) = 
w T x + Wo and y(X..L ) = W T X ..l + Wo = 0, we have 

y(x ) 
(4.7)

l' = Ilwll ' 

Thi s result is illustrated in Figure 4.1. 
As with the linear regression models in Chapter 3, it is sometimes convenient 

to use a more compact notation in which we introduce an additional dummy ' input' 
value .£o = 1 andthendefinew = (wo,w) andiC = (xo , x ) so that 

y(x ) = w TiC. (4.8) 

In this case, the decision surfaces are D-dimensional hyperplanes passing through 
the origin of the D + I-dimensional expanded input space. 

4.1.2 Multiple classes 

Now consider the extension of linear discriminants to J( > 2 classes. We might 
be tempted be to build a J(-c1ass discriminant by combining a number of two-class 
di scriminant functions. However, this leads to some serious difficulties (Duda and 
HaJt, 1973) as we now show. 

Consider the use of J( -1 classifiers each of which solves a two-class problem of 
separating points in a particular class Ck from points not in that class. This is known 
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an 

Figure 4.2 Atter 
biguous regions, ~ 
distinguish pOints 
functions each of ' 
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Figure 4.2 Attempting to construct a }( class discriminant from a set of two class discriminants leads to am­
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to 
distinguish paints in class Ck from points not in class Ck. On the right is an example involving three discriminant e decision surface, 
functions each of which is used to separate a pair of classes Ck and Cj . 

(46) 
example involving three classes where this approach leads to regions of input space 

linguseofy(x) = that are ambiguously classified. 
An alternative is to introduce K(f( - 1)/2 binary discriminant functions , one 

for every possible pair of classes. This is known as a one-versus-one classifier. Each 
point is then classified according to a majority vote amongst the discriminant func­

(4.7) 
tions. However, this too runs into the problem of ambiguous regions, as illustrated 
in the right-hand diagram of Figure 4.2. 

We can avoid these difficulties by considering a single f( -class discriminant 
etimes convenient comprising J{ linear functions of the form 
13] dummy 'input' 
It Yk(X ) = w'fx + WkO (4.9) 

(4.8) and then assigning a point x to class Ck if Yk(X ) > YJ (x ) for all j i' k. The decision 
boundary between class Ck and class Cj is therefore given by Yk(X) = YJ (x ) and 

,s passing through hence corresponds to a (D - 1 )-dimensional hyperplane defined by 

T
(Wk - W j) X + (WkO - wJo) = O. (4.10) 

This has the same form as the decision boundary for the two-class case discussed in 
classes. We might Section 4.1.1, and so analogous geometrical properties apply. 
mber of two-class The decision regions of such a discriminant are always singly connected and 
cuities (Duda and convex. To see this, consider two points X A and X B both of which lie inside decision 

region Rk , as illustrated in Figure 4.3. Any point xthat lies on the line connecting 
)-class problem of 

X A and XB can be expressed in the form 
1SS. This is known 

~ure 4.2 shows an x= .\XA + (1 - .\ )XB (4.11 ) 


J... 
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Figure 4.3 	 Illustration of the decision regions for a mul· 

ticlass linear discriminant, with the decision 

boundaries shown in red. If two pOints XA 

and XB both lie inside the same decision re· 

gion R •. then any point xthat lies on the line 
connecting these two points must also lie in 
R .. and hence the decision region must be 
singly connected and convex. 

_ 
__-----!--------------o.XB 

x 

where °,,;; >. ,,;; 1. From the linearity of the di scriminant functions. it follows that 

(4.12) 

Because both XA and Xu lie inside 'R..k, it follows that Yd XA) > Yj( XA) . and 
Yk( XB) > Yj(XB ), for all j oF k, and hence Yk( X) > Yj(x ), and so xal so lies 
inside 'R..k. Thus 'R..k is singly connected and convex. 

Note that for two classes, we can either employ the formali sm discussed here, 
based on two discriminant functions y, (x ) and Y2( X), or else use the simpler but 
equ ivalent formulation described in Section 4.1.1 based on a single discrinlinant 
function y(x ). 

We now explore three approaches to learning the parameters of linear discrimi­
nant functions, based on least squares, Fisher's linear discriminant, and the percep­
tron algorithm. 

4.1.3 Least squares for classification 
In Chapter 3, we considered models that were linear functions of the parame­

ters, and we saw that the minimi zation of a sum-of-squares error function led to a 
simple closed-form solution for the paramet.er values. It is therefore tempting to see 
if we can apply the same formalism to classi fication problems. Consider a general 
classification problem with J( ciasses, with a I-of-I( binary coding scheme for the 
target vector t. One justification for using least squares in such a context is that it 
approxi mates the conditional expectation lE[t lx ] of the target values given the input 
vector. For the binary coding scheme, thi s conditional expectation is given by the 
vector of posterior class probabilities. Unfortunately, however, these probabilities 
are typically approximated rather poorly, indeed the approximations can have values 
outside the range (0, 1), due to the limited flexibility of a linear model as we shall 
see shortly. 

Each class Ck is described by its own linear model so that 

T 
Uk ( x ) = w "x + WkO 	 (4.13) 

where A~ = 1, ... 1 1(. We can conveniently group these together using vector nota­
tion so that 

y (X) = WTiC (4. 14) 

Exercise 4.2 

Seclion 2.3.7 
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where W is a matrix whose k'h column comprises the D + l·dimensional vector 
Wk = (WkO, W D1' and xis the corresponding augmented input vector (1, x1')1' with 
a dummy input ";0 = 1. This representation was discussed in detail in Section 3. 1. A 
new input x is then assigned to the class for which the output YI. = w~'x is largest. 

We now determine the parameter matrix W by minimizing a sum-of-squares 
error function, as we did for regression in Chapter 3. Consider a training duta set 
{XU ) t n } where n = 1, . , , , N, and define a matrix T whose nth row is the vector t~, 
together with a matrix Xwhose nth row is x~:. The sum-of-squares efror function 
can then be written as 

En(W) = ~Tr {(Sew - T )1'(XW - T )} . (4.15) 

Setting the derivative with respect to W to zero, and rearranging, we then obtain the 

solution for W in the form 

W= (X1'X)-lX1'T = XIT (4. 16) 

where Xl is the pseudo· inverse of the matrix X, as discussed in Section 3.1.1. We 
then obtain the discriminant function in t.he fann 

_ ( _ )1'y (x ) = W 1'x = T T Xl x. (4.17) 

An interesting property of least·squares solutions with multiple target variables 
is that if every target vector in the training set satisfies !\ome linear constraint 

aTtn+b =O (4. 18) 

for some constants a and b, then the model prediction for any value of x wi ll satisfy 
the same constraint so that 

a T y (x ) + b = O. (4.19) 

Thus if we usc a I-of-/( COding scheme for J{ classes, then the predictions made 
by the model will have the property that tpe elements of y (x) wi ll sum to I for any 
value of x, However, lhi!\ summation constraint alone i!\ not sufficient to allow the 
model outputs to be interpreted as probabilities because they arc not constrained to 
lie within the interval (0,1). 

The least·squares approach gives an exact closed·form solution for the discrimi· 
nant function parameters. However, even as a discriminant function (where we use it 
to make decisions directly and dispense with any probabilistic interpretation) it suf· 
fers from some severe problems. We have already seen that least·squares solutions 
lack robustness to outliers, and thi s applies equally to the classification application, 
as illustrated in Figure 4.4. Here we see that the additional data points in the right­
hand figure produce a significan t change in the location of the deci sion boundary, 
even though these point would be correctly classified by the original decision bound· 
ary in the left-hand figure. The sum-of-sq uares error function penalizes predictions 
that are ' too correct' in that they lie a long wayan the correct side of the decision 

l 
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with 
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green 
curve), which is discussed later in Section 4.3.2. The right· hand plot shows the corresponding results obtained 
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive 
to outliers, unlike logistic regression. 

boundary. In Section 7.1.2, we shall consider several alternative error functions for 
classification and we shall see that they do not suffer from this difficulty. 

However, problems with least squares can be more severe than simply lack of 
robustness, as illustrated in Figure 4.5. This shows a synthetic data sct drawn from 
three classes in a two·dimensional input space (Xl, X2), having the property that lin­
ear decision boundaries can give excellent separation between the classes. Indeed, 
the technique of logistic regression, described later in this chapter, gives a satisfac· 
tory solution as seen in the right-hand plot. However, the least-squares solution gives 
poor results, with only a small region of the input space assigned to the green class. 

The failure of least squares should not surprise us when we recall that it cor· 
responds to maximum likelihood under the assumption of a Gaussian conditional 
distribution, whereas binary target vectors clearly have a distribution that is far fTom 
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas· 
sification techniques with much better properties than least squares. For the moment, 
however, we continue to explore alternative nonprobabilistic methods for setting the 
parameters in the linear classification models. 

4.1.4 Fisher's linear discriminant 
One way to view a linear classification model is in terms of dimensionality 

reduction. Consider first the case of two classes, and suppose we take the D· 
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red 
(x ), green (+) , and blue (o) . Lines denote the decision boundaries, and the background colours denote the 
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see 
that the region of input space assigned to the green class is too small and so most of the points from this class 
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing 
correct classification of the training data. 

dimensional input vector x and project it down to one dimension using 

Y = wTx. 	 (4.20) 

If we place a threshold on y and classify y ;;, -Wo as class C and otherwise class 
"C" then we obtain our standard linear classifier discussed in the previous section. 

In general, the projection onto one dimension leads to a considerable loss of infor­
mation, and classes that are well separated in the original D-dimensional space may 
become strongly overlapping in one dimension. However, by adjusting the com­
ponents of the weight vector w , we can s<!lect a projection that maximizes the class 
separation. To begin with, consider a two-class problem in which there are N, points 
of class C, and N, points of class C" so that the mean vectors of the two classes are 
given by 

om 
1 Nl

1 	 '" L- X n 1 
m, _ 

- N2
1 L X n 

(4.21 ) 
nE e 1 nEC2 

The simplest measure of the separation of the classes, when projected onto w, is the 
separation of the projected class means. This suggests that we might choose w so as 
La maxim.i ze 

fi, - fil = w T(m, - mIl (4.22) 

where 
m 'k = wTmk (4.23) 
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms 
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in 
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant, 
showing the greatly improved class separation. 

Appendix E 

Exerci.\"e 4.4 

Exercise 4.5 

is the mean of the projected data from class Ck . However. this expression can be 
made arbitrarily large simply by increasing the magnitude of w. To solve this 
problem , we could constrain w to have unit length, so that L .;, wi = 1. Using 
a Lagrange multiplier to perform the constrained maximization, we then find that 
w ex (m 2 - md. There is stili a problem with this approach. however, as illustrated 
in Figure 4.6. This shows two classes that are well separated in the original two­
dimensional space (Xl, X2) but that have considerable overlap when projected onto 
the line joining their means. This difficulty arises from the strongly nondiagonal 
covariances of the class distributions. The idea proposed by Fisher is to maximize 
a function thal will give a large separation between the projected class means whi1e 
also giving a small variance within each class, thereby mjnimizing the class overlap. 

The projection formula (4.20) Iransforms the sct of labelied data points in x 
into a labelied set in the one-dimensional space y. The with in-class variance of the 
transformed data from class C" is therefore given by 

s1 = L (Yn - m k) 2 (4.24) 
nECk 

where Yn = wTxn. We can define the total within-class variance for the whole 
data sel to be simply sf + s~. The Fisher criterion is defined to be the ratio of the 
between-class variance to the within-class variance and is given by 

(4.25) 

We can make the dependence on w explicil by using (4.20), (4.23), and (4.24) to 
rewrite the Fisher criterion in the form 
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J (w ) = 
WTSsw 
WTSww (4.26) 

where SB is the between-class covariance matrix and is given by 

S 8 = (m2 - m, )(m 2 ­ mIl'" (4.27) 

and Sw 

Sw = 

is 

L (xn ­
nEel 

the total wit

m, )(x " 

hin-class 

- m IlT + L (Xn ­ m 2)(X" 
nEC2 

covariance matrix, given by 

- m2 )"'­ (4.28) 

Differentiating (4.26) with respect to w , we find that J (w ) is maximized when 

(WTSRW)SWW = (w"Sww)Suw . (4.29) 

From (4.27), we sec that S13W is always in the direction of (m2 -m,). FUl1hermore, 
we do not care about the magnitude of w, only its direction, and so we can drop the 
scalar factors (w"Sow) and (w'l'Sww). Multiplying both sides of (4.29) by Sw' 
we then obtain 

w ex Sw' (m2 - m, ), (4.30) 

Note that if the within-class covariance is isotropic, so that Sw is proportional to the 
unit matrix, we find that w is proportional to the difference of the class means, as 
discussed above. 

The result (4.30) is known as Fisher's linear discriminant. although strictly it 
is not a discriminant but rather a specific choice of direction for projection of the 
data down to one dimension. However, the projected data can subsequently be used 
to construct a discriminant, by choosing a threshold Yo so that we classify a new 
point as belonging to C, if y(x) ;?! Yo and classify it as belonging to C2 otherwise. 
For example, we can model the class-conditional densities p(yIC,,) using Gaussian 
distributions and then use the techniques of Section 1.2.4 to find the parameters 
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap­
proximations to the projected classes, the fonnalism of Section 1.5.1 then gives an 
expression for the optimal threshold. Some justification for the Gaussian assumption 
comes from the central limit theorem by noting that y = w T X is the sum of a set of 
random variables. 

4.1.5 Relation to least squares 
The least-squares approach to the determination of a linear discriminant was 

based on the goal of making the model predictions as close as possible to a set of 
target values. By contrast, the Fisher criterion was derived by requiring maximum 
class separation in the output space. It is interesting to see the relationship between 
these two approaches. In particular, we shall show that, for the two-class problem, 
the Fisher criterion can be obtained as a special case of Icast squares. 

So far we have considered I-of-l{ coding for the target values. If, however, wc 
adopt a slightly different target coding scheme, then the least-squares solution for 
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the weights become. equivalent to the Fi.her solution (Duda and Hart. 1973). In 
particular. we shall take the targets for class C, to be N / N ,• where N, is the number 
of patterns in class C, • and N is the total number of pattern•. This target value 
approximates the reciprocal of the prior probability for class C, . For class C2 • we 
shall take the targets to be - N / N2• where N2 is the number of pallerns in class C2. 

The sum-oC-squares error function can be written 

N 

E = ~ L (wTxn +'IlJo - t 1l )2. (4.31) 
n = 1 

Setting the derivatives of E with respect to Wo and w to zero, we obtain respectively 

N 

L(WTXn+Wo - tn) = 0 (4.32) 
n = 1 

N

L (WT Xn + Wo - tn ) Xn = O. (4.33) 
n=1 

From (4.32), and making use of our choice of target coding scheme for the tn, we 
obtain an expression for the bias in the form 

'Wo = _wTm (4.34) 

where we have used 
N N N 

L tn=N1-- N2-=O (4.35)
N, N2 

n = 1 

and where m is the mean of the total data set and is given by 

1 N 1 
m = NLXn = N(N,m, +N2 m 2)' (4.36) 

n = 1 

After some straightforward algebra, and again making use of the choice of tn , the 
Exercise 4.6 second equation (4.33) becomes 

N1N2)Sw + --y;;;- Sn w = N(ml - m, ) (4.37)( 

where S w is defined by (4.28), Su is defined by (4.27), and we have substituted for 
the bias using (4.34). Using (4.27), we note that SBW is always in the direction of 
(m 2 - mJ). Thus we can write 

(4.38) 

where we have ignored irrelevant scale factors. Thus the weight vector coincides 
with that found from the Fisher criterion. In addition, we have also found an expres­
sion for the bias value Wo given by (4.34). This tells us that a new vector x .hould be 
classified as belonging to class C, if y(x) = w T (x - m ) > 0 and class C2 otherwise. 
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4.1.6 Fisher's discriminant for multiple classes 
We now consider the generalization of the Fisher discriminant to I< > 2 classes, 

and we shall assume that the dimensionality D of the input space is greater than the 
number I( of classes. Next, we introduce D' > 1 linear 'features' Yk = W ~x, where 
k = 1, ... , D'. These feature values can conveniently be grouped together to form 
a vector y. Similarly, the weight vectors {wd can be considered to be the columns 
of a matrix W, so that 

y=wTx. (4.39) 

Note that again we are not including any bias parameters in the definition of y_ The 
generalization of the within·class covariance matrix to the case of J( classes follows 
from (4.28) to give 

J( 

Sw = LSk (4.40) 

k= l 

where 

Sk L (x" - mk)(x" ­ mk)T (4.41) 

nECk 

mk ~k LXn (4.42) 

n ECk 

and Nk is the number of patterns in class Ck. In order to find a generalization of the 
between-class covariance matrix, we follow Duda and Hart (1973) and consider first 
the total covariance matrix 

N 

ST = L(xn - m)(xn - m)T (4.43) 
n = l 

where m is the mean of the total data set 

1 N 1 J( 

(4.44)m= NLxn o= NLNkmk 
n = 1 k = l 

and N = Ek Nk is the to!.11 number of data points. The total covariance matrix can 
be decomposed into the sum of the within·c1ass covariance matrix, given by (4.40) 
and (4.41), plus an additional matrix SB, which we identify as a measure of the 
between-class covariance 

ST = Sw + SB (4.45) 

where 
J( 

SB = L Ndmk - m)(mk - m)T (4.46) 
k=l 

j 
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These covariance matrices have been defined in the original x-space. We can now 
define similar matrices in the projected D'-dimensional y-space 

J( 

r 
S w = L L (Yn - J.t k)(Y" - J.t S (4.47) 

1.= 1 nECk 

and 

S u = L 
)( 

Nk( J.tk - J.t )( J.tk - J.tf (4.48) 
k-i 


where 


(4.49) 

Again we wish to constmct a scalar that is large when the between-class covariance 
is large and when the within-class covariance is small. There arc now many possible 
choices of criterion (Fukunaga, 1990). One example is given by 

J (W ) = Tr {SW'SB}. (4.50) 

This criterion can then be rewritten as an explicit runction of the projection matrix 
W in the form 

(4.5 1 ) 

Maximization of such criteria is straightforward, though somewhat involved, and is 
discussed at length in Fukunaga (1990). The weight values are determined by those 
eigenvectors of Sw' Su that correspond to the D' largest eigenvalues. 

There is one important result that is common to all such criteria, which is worth 
emphasizing. We first note from (4.46) that S 8 is composed of the sum of I< ma­
trices, each of which is an outer product of two vectors and therefore of rank I . Tn 
addition , only (T< - 1) of these matrices are independent as a result of the constraint 
(4.44). Thus, S Il has rank at most equal to (I{ - 1) and so there arc at most (I< - 1) 
nonzero eigenvalues. This shows that the projection onto the (1{ - I )-dimensional 
subspace spanned by the e igenvectors of SR docs not alter the value of J (w ), and 
so we are therefore unable to find more than (1< - 1) linear ' features' by this means 
(Fukunaga, 1990). 

4.1.7 The perceptron algorithm 

Anodler example of a linear discriminant model is the perceptron of Rosenblatt 
( 1962), which occupies an important place in the history of pattern recognition al­
gorithms. It corresponds to a two-class model in which the input vector x is fi rst 
transformed using a fixed nonlinear transformation to give a feature vector cj>(x ), 
and this is then used to construct a generali zed linear model of the fonn 

Vex) = f (WT¢(X)) (4.52) 
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w here the nonlinear activation function j(.) i s given by a step function of the fonn 

a ): Of(a)={+l, 	 (4.53)
-1, a < O. 

The vector ¢ (x ) will typically include a bias component <Po(x ) = 1. In earlier 
discussions of two-class classification problems, we have focussed on a target coding 
scheme in which t E {O , I}, which is appropriate in the context of probabilist ic 
models. For the perceptron, howcver, it is morc convenient to use target values 
t = +1 for class C, and t = -1 for class C2 , which matches the choice of activation 
fu nction, 

The algorithm used to detemline the parameters w of the perceptron can most 
easi ly be motivated by error fu nction minimization. A natural choice of error func­
t ion would be the total number of misclassi fied patterns. However, thi s does not lead 
to a simple learning algorithm because the error is a piecewise constant function 
of w, with di scontinuities wherever a change in w causes the decision boundary to 
move across one of the data points. Methods based on changing w using the gradi­
ent of the error fu nction cannot then be applied, because the gradient is zero almost 
everywhere. 

We therefore consider an alternative error function known as the perceptroll cri­
terion. To derive this, we note that we are seeking a weight vector w such that 
patterns x" in class C, w ill have w T ¢ (x,,) > 0, whereas patterns x" in class C2 
have w'1'¢(x n ) < O. Using the t E {- I , + 1} target coding scheme it follows that 
we would like all patterns to satisfy w T ¢ (x n)tn > O. The perceptron criterion 
associates zero error with any pattern that is correctly classified, whereas for a mis­
classified pattern Xn it tries to minimi ze the quantity - w l'¢(xn)tn . The perceptron 
criterion is therefore given by 

Ep(w) = - L wT¢nln 	 (4.54) 
nEM 

Frank Rosenblatt 
1928-1969 

Rosenblatt's percept ron played an 
important role in the history of ma­
chine learning. Initially, Rosenblatt 
simulated the perceptron on an IBM 
704 computer at Cornell in 1957, 
but by the early 1960s he had built 

!
1l'A!.!~..,,,.-

. 

'speCial-purpose hardware that provided a direct, par­
lIel implementation of percept ron learning. Many of 
is ideas were encapsulated in "PrinCiples of Neuro­

s: Perceptrons and the Theory of Brain Mech­
!anisms" published in 1962. Rosenblatt's work was 

iticized 	by Marvin Minksy, whose objections were 
lished in the book "Perceotrons". co-authored with 

Seymour Paper!. This book was widely misinter­
preted at the time as showing that neural networks 
were fatally flawed and could only learn solutions 
linearly separable problems. In fact, it only proved 
such limitations in the case of single-layer networks 
such as the perceptron and merely conjectured (in­
correctly) that they applied to more general network I 
models. Unfortunately, however, this book contributed 
to the substantial decline in research funding for neu­
ral computing, a situation that was not reversed un­
til the mid-1980s. Today, there are many hundreds, 
if not thousands, of applications of neural networks 
in widespread use, with examples in areas such as 
handwriting recognition and information retrieval be­
ing used routinely by millions of people. 

..t.-. 
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Set'/;Oll 3.1.3 

where M denotes the set of all misclassified patterns. The contribution to the error 
associated with a particular misclassified pattern is a linear function of w in regions 
of w space where the pattern is misclassified and zero in regions where it is correctly 
classified. The total error function is therefore piecewise linear. 

We now apply the stochastic gradient descent algorithm to this error function. 
The change in the weight vector w is then given by 

(4.55) 

where 1) is the learning rate parameter and T is an integer that indexes the steps of 
the algorithm. Because the perceptron function y(x, w) is unchanged if we multiply 
w by a constant, we> can set the learning rate parametcr 1) equal 10 I without of 
generality. Note that, as the weight vector evolves during training, the set of patterns 
that are misclassified will change. 

The perceptron learning algorithm has a simple interpretation, as follows. We 
cycle through the training patterns in turn, and for each pattern X u we evaluate the 
perceptron function (4.52). If the pattern is correctly classified, then the weight 
vector remains unchanged, whereas if it is incorrectly classificd, then for class C1 

we add the vector ",(xu) onto the current estimate of weight vector w while for 
class C2 we subtract the vector "'(xu) from w. The perceptron learning algorithm is 
illustrated in Figure 4.7. 

If we consider the effect of a single update in the perceptron learning algorithm, 
we see that the contribution to the error from a misclassified pattern will be reduced 
because from (4.55) we have 

_ (T+ I )T", _ _ (T)T", _ ( '" )'1' ", I _ (T)"' ",
W \f'n tn - W '+'n tn '+'n tn 'f'n ' n < W 'Yn In (4.56) 

where we have set ') = 1, and made use of II"'ntu ll ' > O. Of course, this does 
not imply that the contribution to the error function from the other misclassified 
patterns will have been reduced. Furthennore, the change in weight vector may have 
caused some previously correctly classified patterns to become misc1assified. Thus 
the perceptron learning rule is not guaranteed to reduce the total error function at 
each stage. 

However, the percepttrm convergence theOl'em states that if there exists an ex­
act solution (in other words, if the training data set is linearly separable), then the 
perceptron learning algorithm is guaranteed to find an exact solution in a tinite num­
ber of steps. Proofs of this theorem can be found for example in Rosenblatt ( 1962), 
Block (1962), Nilsson (1965), Minsky and Papert (1969), Hertz e/ at. (1991), and 
Bishop (1995a). NOle, however, that the number of steps required to achieve con­
vergence could still be substantial, and in practice, until convergence is achieved, 
we will not be able to dist inguish between a nonseparable problem and one that is 
simply slow to converge. 

Even when the data set is linearly separable, there may be many solutions, and 
which one is found will depend on the initialization of the parameters and on the or­
der of presentation of the data points. Furthermore, for data sets that are not linearly 
separable, the perceptron learning algorithm will never converge. 
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Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data pOints from two 
classes (red and blue) in a two-dimensional feature space (.p" .p,). The top left plot shows the initial parameter 
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the 
arrow points towards the decision region which classified as belonging to the red class. The data point circled 
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision 
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered , 
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision 
boundary shown in the bottom right plot for which all data pOints are correctly classified. 
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Figure 4 

Figure 4.8 Illustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs 
were obtained using a simple camera system in which an input scene, in this case a printed character, was 
illuminated by powerful lights, and an image focussed onto a 20 x 20 array of cadmium sulphide photocells, 
giving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph, 
which allowed different configurations of input features to be tried. Often these were wired up at random to 
demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern 
digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was 
implemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby 
allowing the value of the weight to be adjusted automatically by the learning algorithm. 

Aside from difficulties with the learning algorithm, the perceptron does not pro­
vide probabilistic outputs, nor does it generalize readily to ]{ > 2 classes. The most 
important limitation, however, arises from the fact that (in common with all of the 
models discussed in this chapter and the previous one) it is based on l inear com­
binations of fixed basis functions. Morc detailed discussions of the limitations of 
perceptrons can be found in Minsky and Papel1 (1969) and Bishop (1995a). 

Analogue hardware implementations of the perceptron were built by Rosenblatt, 
based on motor-driven variable resistors to implement the adaptive pammeters Wj . 

These are illustrated in Figure 4.8. The inputs were obtained from a simple camera 
system based on an array of photo-sensors, whi le the basis functions <p cou ld be 
chosen in a variety of ways, for example based on simple fixed functions of random ly 
chosen subsets of pixels from the input image. Typical applications involved learning 
to discriminate simple shapes or characters. 

At the same time that the perceptron was being developed, a closely re lated 
system called the at/aline, which is shon for 'adaptive linear element', was being 
explored by Widrow and co-workers. The functional form of the model was the same 
as for the perceptron, but a different approach to training was adopted (Widrow and 
Hoff, 1960; Widrow and Lehr, 1990). 

4.2. Probabilistic Generative Models 

We turn next to a probabi listic view of classification and show how models with 
linear decision boundaries arise from simple assumptions about the distribution of 
the data. In Section 1.5.4, we discussed the distinction between the discriminative 
and the generative approaches to classification. Here we shall adopt a generative 
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Figure 4.9 	 Plot of the logistic sigmoid function 
a(a) defined by (4.59). shown in '" red, together with the scaled pro-
bit function <!o ('\a) , for ,\2 = ,,/8, 
shown in dashed blue, where <!o (a) 
is defined by (4.114). The scal­
ing factor " /8 is chosen so that the 
derivatives of the two curves are 0.5 
equal for a = O. 

ows how the inputs 
() I r=1?lIed character, was 

-5 o 5;ulphide photocells, 
middle photograph, 
~d up at random to 
mtrast to a modern approach in which we model the class-conditional den sities p(xICk ), as well as the 
. Each weight was 	 class priors p(C,,), and then use these to compute posterior probabilities l'(Ck lx) 
'etrie motor thereby through Bayes' theorem. 

Consider first of all the case of two classes. The posterior probability for class 
C1 can be written as 

)tron does not pro­ p(x IC1)p(Cd
classes. The most 	 p(C1Ix) 

p(xIC,)p(C, ) + p(xIC2 )p(C2 )Ion with all of the 
1:!d on linear COIll­ -,-,----;-"7 = a (a) (4.57)

the limitations of 1 + exp( -a) 
) (I 995a). 

where we have defined
"ilt by Rosenblatt, 

" = In 1'(xIC1)p(Cd
ve parameters 'W.i. 	 (4.58)

p(xIC2 )1'(C2 ) 
1 a simple camera 
;tions q, could be and cr(a) is the logistic sigmoid function defined by 
:tions of randomly 1
involved learning 	 (4.59)cr(a) = 1 + exp ( -a) 

a closely related which is plotted in Figure 4.9. The tenn. 'sigmoid' means S-shaped. This type of 
ment' , was being function is sometimes also called a 'squashing function' because it maps the whole 
odel was the same real axis into a finite interval. The logistic sigmoid has been encountered already 
lted (Widrow and in earlier chapters and plays an important role in many classification algorithms. It 

satisfies the following symmetry propel1y 

crt -a) = 1 - cr(a) 	 (4.60) 

as is easily verified. The inverse of the logistic sigmoid is given by 

lOW models 	with a= In(~(T ) 	 (4.61)
he distribution of 	 l-cr 
he discriminative and is known as the logit function. It represents the log of the ratio of probabilities 
lopt a generative In [p(C, lx)jp(C2 Ix)] for the two classes, also k.nown as Ihe log odds. 
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Note that in (4.57) we have simply rewritten the posterior probabilities in an 
equivalent fann, and so the appearance of the logistic sigmoid may seem rather vac­
uous. However, it will have significance provided a(x) takes a simple functional 
form. We shall shortly consider situations in which «(x) is a linear function of x , in 
which case the posterior probability is governed by a generalized linear model. 

For the case of j( > 2 classes, we have 

p(XICk)p(Ck ) 
2:: j p(x lCj )p(C, ) 

exp(ak ) 
= (4.62)2:: j cxp(aj) 

which is known as the normalized exponential and can be regarded as a multiclass 
generalization of the logistic sigmoid. Here the quantities Uk are defined by 

(4.63) 

The nomlalized exponential is also known as the softmax filllcr;oll, as it represents 
a smoothed version of the 'max' function because, if Uk » Uj for all j # k, then 
p(Cklx) "" 1, and p(C1 Ix) "" O. 

We now investigate the consequences of choosing specific fonus for the class­
conditional densities, looking first at continuous input variables x and then dis­
cussing briefly the case of di screte inputs. 

4.2.1 Continuous inputs 

LCL us assume that the class-conditional densities are Gaussian and then explore 
the resulting form for the posterior probabilities. To start with, we shall assume thaI 
all classes share the same covariance matrix . Thus the density for class Ck is given 
by 

(4.64) 

Consider first the case of two classes. From (4.57) and (4.58), we have 

l'(C,[X) = a (w Tx + wo) (4.65) 

where we have defined 

w (4.66) 

(4.67)Wo 

We see that the quadratic terms in x from the exponents of the Gaussian densities 
have cancelled (due to the assumption of common covariance matrices) leading to 
a linear function of x in the argument of the logistic sigmoid. This result is illus­
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting 
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Figure 4.10 The lef1-hand plot shows the class-conditional densities for two classes, denoted red and blue. 
On the right is the corresponding posterior probability p(C, Ix), which is given by a logistic sigmoid of a linear 
function of x. The surtace in the right-hand plot is coloured using a proportion of red ink given by p(C, lx ) and a 
proportion of blue ink given by p(C, lx) = 1 - p(C, Ix). 

decision boundaries correspond to surfaces along which tbe posterior probabilities 
p(Ck lx ) are constant and so will be given by linear functions of x, and therefore 
the decision boundaries are linear in input space. The prior probabilities p(Ck ) enter 
only through the bias parameter Wo so that changes in the priors have the effect of 
making paralic I shifts of the decision boundary and more generally of the parallel 
contours of constant posterior probability. 

For the general case of J( classes we have. from (4.62) and (4.63), 

ak(x) = wlx + WkO (4.68) 

where we have defined 

Wk E - 1
I-' k (4.69) 

WkO 
1 T .... -l 

- '2l-'k 2; I-' k + In p(Ck ). (4.70) 

We see that the ak(x) are again linear functions of x as a consequence of the cancel­
lation of the quadratic terms due to the shared covariances. The resulting decision 
boundaries, corresponding to the minimum misclassification rate. will occur when 
two of the posterior probabilities (the two largest) are equal, and so will be defined 
by linear functions of x , and so again we have a generalized linear model. 

If we relax the assumption of a shared covariance matrix and allow each c1ass­
conditional density p(xICk ) to have its own covariance matrix Eko then the earlier 
cancell ations will no longer occur, and we wi ll obtain quadratic functions of x, giv­
ing rise to a quadratic discriminant. The linear and quadratic decision boundaries 
are illustrated in Figure 4.1 I. 
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian 
distribution, coloured red, green , and blue, in which the red and green classes have the same covariance matrix. 
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents 
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that 
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas 
those between the other pairs of classes are quadratic. 

4.2.2 Maximum likelihood solution 

Once we have specified a parametric functional form for the class-conditional 
densities lJ(xICk). we can then determine the values of the parameters. together with 
the prior class probabilities p(Ck ). lI sing maximum likelihood. This requires a dala 
set comprising observations of x along with their corresponding class labels. 

Consider first the case of two classes, each having a Gaussian class-conditional 
density with a shared covari ance matrix , and suppose we have a data set {Xnl/'n} 
where n = 1. .. .. N. Here tn = 1 denotes class C, and tn = 0 denotes class C2 . We 
denote the prior class probability p(C,) = 7r. so that p( C2 ) = 1 - To. For a data point 
Xn from class C10 we have "n = 1 and hence 

Similarly for class C2 , we have tn = 0 and hence 

1l{Xn.C2 ) = 1l{C2 )p(xnIC2 ) = (1 - 7r)N(xnlJ.t2' E ). 

Thus the likelihood function is given by 

p(t l7r· J.t , . J.t2. E ) = II
N 

[7rN(x " 1J.t1 ' E lJ'" [(1 - 7r )N(x " 1J.t2' E )J' - '" (4.7 1) 
n=l 

where t = (t, •... , IN)T As usual, it is convenient to maximjze the log or the 
likelihood function. Consider first the maximization w ith respect to 7r. The terms in 

F 
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the log likelihood function that depend on rr are 

N

L {tn Inrr + (1- tn) In(l- rr)}. 	 (4.72) 

11=1 

Setting the derivative with respect to rr equal to zero and rearranging, we obtain 

N 
1 '" N, N, (4.73)rr= N L.. [n= N =-­

n=1 

where N, denotes the total number of data points in class Clo and N, denotes the total 
number of data points in class C2 • Thus the maximum likelihood estimate for rr is 
simply the fraction of points in class C, as expected. This result is easil y generalized 
to the multiclass case where again the maximum like lihood esti mate of the prior 
probability associated with class Ck is given by the fraction of the training set points 
assigned to that class. 

Now consider the maximization with respect to Mt" Again we can pick out of 
the log likelihood function those tenns that depend on i-t l giving 

N 1 NL tn I n N(xnl l' l' ~ ) = - 2" L tn(xn - I' t)T~-t (x n - 1',) + COllst. (4.74) 
n=1 	 11=1 

Setting the derivative with respect to It ] to zero and rearranging, we obtain 

1 N 

1'1 = - "' t (4.75)
Nl L n X n 

n=l 

which is simply the mean of all the input vectors X n assigned to class Ct . By a 
similar argument, the corresponding result for 1-L2 is given by 

1 N 
(4.76)1'2 = N2 	L (l - tn)x" 

n=l• 
which again is the mean of all the input vectors X n assigned to class C'2. 

Finally, consider the maximum likelihood solution for the shared covariance 
matrix ~. Picking out the terms in the log likelihood function that depend on ~ , we 
have 

1 N 1 N 

-2" L tn In I ~ I- 2" L tn(x n ­ I'sr~ - l(Xn - 1'1 ) 
n=l n=l 

N N 
1 '" - 2" L.. (l - tn) In I ~ I 1 '" - 2" L.. (l ­ ) T _,tn (x u - 1'2) ~ (Xn ­ 1'2) 

n= l 71.=1 

= N-- ln l ~ l-
2 

N { '}- Tr ~- S
2 

(4.77) 
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Exercise 4.11 

where we have defined 

N , N2 s - S, +-S2 (4.78)N N 

(4.79) 

l ,\" T
S2 = N2 6 (x n - JL2)(Xn - JL2) . (4 .80) 

nEC2 

Using the standard result for the maximum likelihood solution for a Gau ssian distri­
bution, we see that :E = S , which represents a weighted average of the covariance 
matrices associated with each of the two cl asses separately. 

This result is easily extended to the J{ class problem to obtain the corresponding 
maximum likelihood solutions for the parameters in which each class-conditional 
density is Gaussian with a shared covariance matrix. Note that the approach of fitting 
Gaussian distributions to the classes is not robust to outliers, because the maxi mum 
li ke lihood estimation of a Gaussian is not robust. 

4.2.3 Discrete features 
Let us now consider the case of discrete feature values Xi . For simplicity, we 

begin by looking at binary feature values Xi E {O, I} and discuss the extension to 
more general discrete features shortly. If there are D inputs, then a general distribu­
tion would correspond to a table of 2° numbers for each class. containing 2° - 1 
independent variables (due to the summation constraint), Because thi s grows expo­
nentially with the number of features, we might seek a more restricted representa­
tion. Here we will make the naive Bayes assumption in which the feature values are 
treated as independent, conditioned on the c lass Ck . Thus we have class-conditional 
di stributions of the form 

D 

p(x ICk ) = IT i't: (1 - i'ki)l - X. (4 .8 1) 
i = l 

which contain D independent parameters for each class. Substituting into (4.63) then 
gives 

D 

ak(x ) = L { Xi In i'ki + (1 - Xi) In(l - i'ki)} + Inl'(Ck ) (4.82) 
i= l 

which again are linear functions of the input values Xi_ For the case of T< = 2 cltlsses, 
we can alternatively consider the logistic sigmoid formulation given by (4.57). Anal­
ogous results are obtained for discrete variables each of which can take M > 2 
states. 

4.2.4 Exponential family 
As we have seen, for both Gaussian distributed and discrete inputs, the posterior 

class probabilities are given by generalized linear models with logistic sigmoid (T( = 

4.3 
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2 classes) or softtnax (T( ;;, 2 classes) activation function s. These are particular cases 
of a more gcneral result obtained by assuming that the class-conditional densities 
P{XICk ) are members of the exponential family of distributions. 

Using the form (2.194) for members of the exponential family, wc see that the 
distribution of x can be written in the form 

p{XI Ak) = h{x )g{Ak) exp {Afu{x ) } . (4.83) 

We now restrict attention to the subclass of such distributions for which u {x) = x. 
Then we make use of (2.236) to introduce a scaling parameter s, so that we obtain 
the restricted set of exponential family class-conditional densities of the form 

(484)p{x IAk,8) = ~h Gx) g{Ak) exp {~Afx} . 
Note that we arc allowing each class to have its own parameter vector Ak but we are 
assuming that the classes share the same scale parameter s. 

For the two-class problem, we substitute thi s expression for the class-conditional 
densities into (4.58) and we see that the posterior class probability is again given by 
a logistic sigmoid acting on a linear function a{x ) which is given by 

a{x ) = (A, - A2)Tx + Ing{AI ) -lng{A2) + Inp{CJ) -l lI p{C2 ). (4.85) 

Similarly, for the K-class problem, we substitute the class-conditional densi ty ex­
pression into (4.63) to give 

iJ,1,{X) = Af x + Ing(Ak) + Inp{Ck) (4.86) 

and so again is a linear runction of x. 

Probabilistic Discriminative Models 

For the two-class classification problem, we have seen that the posterior probability 
of class C1 can be written as a logistic sigmoid acting on a linear function of x , for a 
wide choice of class-conditional distributions P{XICk). Similarly, for the multiclass 
case, the posterior probability of class Ck is given by a softmax tran sformation of a 
linear function of x. For specific choices of the class-conditional densities p{x ICk ), 

we have used maximum likelihood to determine the parameters of the densities as 
well as the class priors P{Ck) and then used Bayes' theorem to find the posterior c lass 
probabilities. 

However, an alternative approach is to use the functiona1 form of the generalized 
linear model explicitly and to detcrmine its parameters directly by using maximum 
likelihood. We shall see that there is an efficient algorithm finding such solutions 
known as iterative reweigh ted least squares, or lRLS. 

The indirect approach to finding the parameters of a generalized linear model , 
by fitting class-conditional densities and class priors separately and then applying 

1 
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Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot 
shows the original input space (.<J, .<,) together with data points from two classes labelled red and blue. Two 
'Gaussian' basis functions .pJ(x ) and .p,(x ) are defined in this space with centres shown by the green crosses 
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space 
(.p" .p,) togelher with the linear decision boundary obtained given by a logistic regression model of the form 
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space, 
shown by the black curve in the left-hand plot. 

Bayes' theorem, represents an example of generative modelling. because we could 
take such a model and generate synthctic data by drawing values of x from the 
marginal distribution p(x ). In the direct approach, we arc maximizing a likelihood 
function defined through the conditional distribution p(Ckix ), which represents a 
form of discriminative training. One advantage of the discriminative approach is 
that there will typically bc fewer adaptive parameters to be determined, as we shall 
see shortly. It may also lead to improved predictive pe.fonnance, particularly when 
the class-conditional density assumptions give a poor approximation to the true dis­
tributions. 

4.3.1 Fixed basis functions 
So far in this chapter, we have considered classification models that work di­

rectly with the original input vector x. However, all of the algorithms arc equally 
applicable if we first make a fixed nonlinear transformation of the inputs lIsing a 
vector of basis functions </>(x). The resulting decision boundaries will be linear in 
the feature space </>, and these correspond to nonlinear decision boundaries in the 
original x space, as illustrated in Figure 4.12. Classes that are linearly separable 

Etercise -1.12in the feature space </>(x) nced not be linearly separable in the original observation 
space x. Notc that as in our discussion of linear models for regression, one of the 



'. 
.~\. 
.:/' 

Se{'/io/l 3.6 

<P , 

)dels. The left plot 
red and blue. Two 

, the green crosses 
Iding feature space 
I model of the form 
riginal input space, 

because we could 
Jes of x from the 
tizing a likelihood 
vhich represents a 
lative approach is 
nined, as we shall 
particularly when 

ion to the true dis­

dels that work di­
ithms are equally 
:hc inputs using a 
s will be linear in 
boundaries in the 
linearly separable 
iginal observation Exercise 4.12 
ession, one of the 

4.3. Probabilistic Discriminative Models 205 

basis functions is typically set to a constant, say 1>o(x) = I, so that the correspond­
ing parameter Wo plays the rolc of a bias. For the remainder of this chapter, we shall 
include a fixed basis function transformation </>(x). as this will highlight some useful 
similarities to the regression models discussed in Chapter 3. 

For many problems of practical interest, there is significant overlap between 
the class-conditional densities p(xIC,). This corresponds to posterior probabilities 
p(C,lx), which, for at least some values of x, are not 0 or I. In such cases, the opti­
mal solution is obtained by modelling the posterior probabilities accurately and then 
applying standard decision theory, as discussed in Chapter I. Note that nonlinear 
transformations </>(x) cannot remove such class overlap. Indeed, they can increase 
the level of overlap, or create overlap where nonc existed in the original observation 
space. Howevcr, suitable choices of nonlineariry can make the process of modelling 
the posterior probabilities easier. 

Such fixed basis function models have important limitations, and these will be 
resolved in later chapters by allowing the basis functions themselves to adapt to the 
data. Notwithstanding these linUtations, models with fixed nonlinear basis functions 
play an important role in applications, and a discussion of such models will intro­
duce many of the key concepts needed for an understanding of their more complex 
counterparts. 

4.3.2 Logistic regression 

We begin our treatment of generalized linear models by considering the problem 
of two-class classification. In our discussion of generative approaches in Section 4.2, 
we saw that under rather general assumptions, the posterior probability of class C1 

can be wrillen as a logistic sigmoid acting on a linear function of the feature vector 
</> so that 

71(C1 1</» = y(</» = u (wT</>l (4.87) 

with 71(C2 1</» = 1 - 71(C11</». Here u(·) is the logistic sigmoid function defined by 
(4.59). In the terminology of statistics, this model is known as /ogiJ/ic regressioll, 
although it should be emphasized that this is a model for classification rather than 
regressIOn. 

For an M -dimensional feature space eli, this model has M adjustable parameters. 
By contrast, if we had fitted Gaussian class conditional densities using maximum 
likelihood, we would have used 2M parameters for the means and M(M + 1)/2 
parameters for the (shared) covariance matrix. Together with the class prior 71(Cd, 
this gives a total of M(M +5)/2+ 1 parameters, which grows quadratically with M, 
in contrast to the linear dependence on M of the number of parameters in logistic 
regression. For large values of M, there is a clear advantage in working with the 
logistic regression model directly. 

We now use maximum likelihood to determine the parameters of the logistic 
regression model. To do this, we shall make use of the derivative of the logistic sig­
moid function, which can conveniently be expressed in terms of the sigmoid function 
itself 

du = u(l- u). (4.88)
da 
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Exercise 4.14 

For a data set {4>n ' in} , where in E {O, I} and 4>" 
1, ... , N, the likelihood function can be written 

N 

p(t lw) = IT y~n {1 - y,, }l ~tn (4.89) 
n = 1 

where t = (t l , ... , t N)'r and Yn = p(C, I4>n)' As usual, we can define an error 
function by taking the negative logarithm of the likelihood, which gives the cross· 
en/ropy error function in the form 

E(w) = - Ill p(tlw) = - L
N 

{I.,. In Yn + (1 - t,,) In (1 - Yn)} (4.90) 
n = 1 

where Yn = u(an) and an = w T 4>". Taking the gradient of the error function with 
respect to w. we obtain 

N 

V E(w ) = L (Yn - t ,,) 4>n (4.9 1) 
n=1 

where we have made use of (4.88). We see that the factor involving the derivative 
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient 
of the log likelihood. Tn particular, the contribution to the gradient rrom data point 
n is given by the 'error' Yn - tn between the target value and the prediction of the 
model, times the basis function vector 4>n. Furthermore, comparison with (3.13) 
shows that this takes precisely the same form as the gradient of the sum-or-squares 
error function for the linear regression model. 

If desired, we could make use of the result (4.91) to give a sequential algorithm 
in which patterns are presented onc at a time, in which each of the weight vectors is 
updated using (3.22) in which V En is the n t h term in (4.91). 

It is worth noting that maximum likelihood can exhibit severe over-fitting ror 
data sets that are linearly separable. This arises because the maximum likelihood so­
lution occurs when the hyperplane corresponding to a = 0.5, equivalent to w'" 4> = 
0, separates the two classes and the magnitude of w goes to infinity. In thi s case, the 
logistic sigmoid function becomes infinitely steep in reature space, corresponding to 
a Heaviside step function, so that every training point [TOm each class k is assigned 
a posterior probability p(Cklx) = 1. Furthermore, there is typically a continuum 
of such solutions because any separating hyperplane will give rise to the same pos­
terior probabilities at the training data points, as will be seen later in Figure 10.13. 
Maximum likelihood provides no way to favour one such solution over another, and 
which solution is found in practice will depend on the choice of optimization algo­
rithm and on the parameter initialization. Note that the problem will arise even if 
the number of data points is large compared with the number of parameters in the 
model , so long as the training data set is linearly separable. The singularity can be 
avoided by inclusion of a prior and finding a MAP solution for w , or equivalently by 
adding a regularization term to the error function. 

Sectio/l 3.1.1 
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4.3.3 Iterative reweighted least squares 

Tn the case of the linear regression models discussed in Chapter 3, the maxi­
mum likelihood solution, on the assumption of a Gaussian noise model, leads to a 
closed-form solution. This was a consequence of the quadratic dependence of the 
log likelihood function on the parameter vector w. For logistic regression, there 
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid 
function. However, the departure from a quadratic form is not substantial. To be 
precise, the error function is concave, as we shall see shortly, and hence has a unique 
ntinimum. Furthermore, the error function can be ntinintized by an efficient iterative 
technique based on the Newton -Raphsoll iterative optimization scheme, which uses a 
local quadratic approximation to the log likelihood function . The Newton-Raphson 
update, for minimizing a function E (w ), takes the form (Fletcher, 1987; Bishop and 
Nabney, 2008) 

w (ncw) = w (old) _ H - 1'VE (w ). (4.92) 

where H is the Hessian matrix whose elements comprise the second derivatives of 
E (w ) with respect to the components ofw. 

Let us first of all apply the Newton-Raphson method to the linear regression 
model (3.3) with the sum-of-squares error function (3. 12). The gradient and Hessian 
of this error function are given by 

N 
,",,1' T T'VE (w ) = L.)w </>n - t") </>,, = <I> <l>w - <I> t (4.93) 

n=l 

N 

H = 'V'VE(w ) = L</>n </>~ = <l>T<I> (4.94) 
n=l 

where <I> is the N x M design matrix, whose n <" row is given by </>~. The Newton­
Raphson update then takes the form 

w (ncw) = w (old) _ (<I>T<I» - l {<I>T<I>w(olrl ) _ <l>Tt} 

= (<I>T <I» -l <1> Tt (4.95) 
• 

which we recognize as the standard least-squares solution. Note that the error func­
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact 
solution in one step. 

Now let us apply the Newton-Raphson update to the cross-entropy error function 
(4.90) for the logistic regression model. From (4.91) we see that the gradient and 
Hessian of this error function are given by 

N 

'VE(w ) L (Yn - tn)</>" = <l>T (y - t ) (4.96) 
n = l 

N 

H = 'V 'V E(w ) = LYn( l - Yn ) </>,, </>~ = <l>TR<I> (4.97) 
n= l 
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where we have made use of (4.88). Also, we have introduced the N x N diagonal 
matrix R with elements 

Section 4.2 
(4.98) 

We see that the Hessian is no longer constant but depends on w through the weight­
ing matrix R, corresponding to the fact that the error function is no longer quadratic. 
Using the property 0 < Yn < I, which follows from the form of the logistic sigmoid 
function, we see that u THu > 0 for an arbitrary vector u, and so the Hessian matrix 
H is positive definite. It follows that the error function is a concave function of w 
and hence has a unique minimum. 

The Newton-Raphson update formula for the logistic regression model then be­
comes 

w (new) W(old) _ (pTRP)- ' pT (y _ t) 

(p TRp) - l {p·I·Rpw(old) _ pT (y _ t)} 

(pTRp)- l pTRz (499) 

where z is an N -dimensional vector with elements Exercise 4.17 

z = PW(old ) - R - 1(y - t). (4.lO0) 

We see that the update formula (4.99) takes the form of a set of nonnal equations for a 
weighted least-squares problem. Because the weighing matrix R is not constant but 
depends on the parameter vector w, we must apply the normal equations iteratively, 
each time using the new wcight vector w to compute a revised weighing matrix 
R. For this reason, the algorithm is known as iterative reweighted least squares, or 
IRLS (Rubin, 1983). As in the weighted least-squares problem, the clements of the 
diagonal weighting matrix R can be interpreLed as variances because the mean and 
variance of t in the logistic regression model are given by 

IEll] = a(x ) = y (4.101) 


varlt] IEll2] - IEW = <T (x ) - <T (X)2 = y(1 - y) (4.102) 


where we have used the property t 2 = t for t E {O , I}. In fact, we can interpretlRLS 
as the solution to a linearized problem in the space of the variable a = w T <p. The 
quantity Zn , which corresponds to the nth element of z, can then be given a simple 
interpretation as an effective target value in this space obtained by making a local 
linear approximation to the logistic sigmoid function around the current operating 
point W(old) 

G.,,(w ) 

Exercise 4./8 
(4.103) 
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N x N diagonal 4.3.4 Multiclass logistic regression 

Sectioll 4.2 Tn our discussion of generative models for multiclass classification, we have 
(4.98) seen that for a large c lass of distributions, the posterior probabilities are given by a 

"Dugh the weight­ softmax transformation of linear functions of the feature variables, so that 
longer quadratic. 

exp(ak)
! logistic sigmoid (4.104)p(Ck l</» = Yk(</» = 2:: cxp(aj)
Ie Hessian matri x j 

.ve function of w 
where the 'actjvations' a k are given by 

on model then be­
ak = wr<1>. (4. 105) 

There we used maxi mum likelihood to determine separately the class-conditional 
densities and the class priors and then found the corresponding posterior probabilities 

t) } using Bayes' theorem, thereby implicitly determining the parameters {wd. Here we 
consider the usc of maximum li kelihood to determine the parameters (Wk} of this(4.99) 
model directly. To do this. we will require the derivatives of Yk with respect to all of 

Exercise 4.17 the activations aj. These are given by 

(4.100) D.llk = ?Jk(hj _?lj) (4.106) 
iJUj 

lal equat.ions for a 
i not constant but where I kj are the elements of the identity matrix. 
ations iteratively, Next we write down the likelihood function. This is most easily done using 
weighing matrix the I-of-I{ coding scheme in which the target vector t " for a feature vector <1>" 
least squares, or belonging to class Ck is a binary veclOr with all elements zero except for element k, 

e clements of the which equals one. The likelihood function is then given by 
Jse the mean and 

N f< N K 

p (T lw l, .... W I() = II II p(Ckl <l>,,)tn k = II II Y:,l' (4.107) 

(4.101) n=1 k=l 1 k=1n~

Y) (4.102) where Yn" = Yd<l>,J. and T is an N x J( matrix of target variables with elements 
tnk ' Taking the negative logarithm then gjves 

an interpret lRLS 

' a = w T </>. The N I( 


)c given a simple E(Wl • ...• wJ( ) = - In p(Tlwl • ... •WI( ) = - L L I,,!, 111 Yn! (4.108) 
y making a local n=1 k= l 
;::urrent operating 

which is known a~ the cro,fis-enlropy error function for the multiclass classification 
problem. 

We now take the gradient of the error function with respect to one of the param­
eter vectors wJ . Maki ng use of the result (4.106) for the derivatives of the softmax 

Exercise 4.1 fi function, we obtain 

(4. 103) 
N 

\7wJE(WI" ..• WI( ) = L (Ynj - tnj) </>" (4.109) 
1l=1 

k 
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where we have made use of L:k tnk = 1. Once again , we see the same form arising 
for the gradient as was found for the sum-of-squares error function with the linear 
model and the cross-entropy error for the logistic regression model, namely the prod­
uct of the error (Ynj - tnj) times the basis function <Pn- Again, we could use this 
to formulate a sequential algorithm in which patterns are presented one at a time, in 
which each of the weight vectors is updated using (3.22). 

We have seen that the derivative of the log likelihood function for a linear regres­
sion model with respect to the parameter vector w for a data point n took the form 
of the 'error' Yn - tn times the feature vector <Pn' Similarly, for the combination 
of logistic sigmoid activation function and cross-entropy error function (4.90), and 
for the softmax activation function with the multiclass cross-entropy error function 
(4.108), we again oblain this same simple form. This is an example of a more general 
result , as we shall see in Section 4.3.6. 

To find a batch algorithm, we again appeal to the Newton-Raphson update to 
obtain the corresponding IRLS algorithm for the multiclass problem. This requires 
evaluation of the Hessian matrix that comprises blocks of size M x M in which 
block j, k is given by 

N 

Vw, Vw,E(Wl " " , WK) = - L Ynd h j -YnJ) <Pn<P;" (4. 110) 
n=l 

As with the two-class problem, the Hessian matrix for the multiclass logistic regres­
sion model is positive definite and so the error function again has a unique minimum. 
Practical details of IRLS for the multiclass case can be found in Bishop and Nabney 
(2008). 

4.3.5 Probit regression 
We have seen that, for a broad range of class-conditional distributions, described 

by the exponential family, the resulting posterior class probabilities are given by a 
logistic (or softmax) transformation acting on a linear function of the feature vari­
ables. However, not all choices of class-conditional density give rise to such a simple 
form for the posterior probabilities (for instance, if the class-conditional densities are 
modelled using Gaussian mixtures). This suggests that it might be worth exploring 
other types of discriminative probabilistic model. For the purposes of this chapter, 
however, we shall return to the two-class case, and again remain within the frame­
work of generalized linear models so that 

p(t = 11a) = f( a) (4.111 ) 

where a = W T <P, and Jl) is the activation function. 
One way to motivate an alternative choice for the link function is lo consider a 

noisy threshold model , as follows. For each input <P" , we evaluate a" = W T <P", and 
then we set the target value according to 

tn = 1 if an ~ () 
(4.112){ Ln = 0 otherwise. 
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Figure 4.13 Schematic example of a probability density p(O) 
shown by the blue curve, given in this example by a mixture 
of two Gaussians, along with its cumulative distribution function 
f (a), shown by the red curve. Note that the value of the blue 0.8 
curve at any paint, such as that indicated by the vertical green 
line, corresponds to the slope of the red curve at the same point. 0.6 
Conversely, the value of the red curve at this point corresponds 
to the area under the blue curve indicated by the shaded green 
region. In the stochastic threshold model, the class label takes 0.4 

the value t = I if the value of a = w T <I> exceeds a threshold, oth­
erwise it takes the value t = O. This is equivalent to an activation 0.2 
function given by the cumulative distribution function f (a). 

0 
0 2 3 

If the value of 0 is drawn from a probability density p(O), thcn the corresponding 
activation function will be given by the cumulative distribution function 

f( a) = l~ p(O) dO (4.113) 

as illustrated in Figure 4.13. 
As a specific example, suppose that the density p(O) is given by a zero mean, 

unit variance Gaussian. The corresponding cumulative distribution function is given 
by 

if> (a) = L~N (Ola, 1) dO (4.114) 

which is known as the probit function. It has a sigmoidal shape and is compared 
with the logistic sigmoid function in Figure 4.9. Note that the use of a more gen­
eral Gaussian distribution does not change the model because this is equivalent to 
a re-scaling of the linear coefficients w. Many numerical packages provide for the 
evaluation of a closely relatcd function defined by 

2 f." 
erf(a ) = .jii J~ exp( _ 0

2 / 2) de (4.115) 

and known as the erffullctioll or error function (not to be confused with the error 
Exercise 4.21 function of a machine learning model). It is related to the prabit function by 

iJ.> (a) = 21 { 1 (4. 116) 1 + j2erf(a ) } . 

The generalized linear model based on a prabit activation fun ction is known as probit 
regression. 

We can determine the parameters of this model using maximum likelihood , by a 
straightforward extension of the ideas discussed earlier. In practice, the results found 
using prohit regression tend to be similar to those of logistic regression . We shall , 

4 
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however, find another use for the probit model when we discuss Bayesian treatments 
of logistic regression in Section 4.5. 

One issue that can occur in practical applications is that of outliers, which can 
arise for instance through errors in measuring the input vector x or through misla­
belling of the target value t. Because such points can lie a long way to the wrong side 
of the ideal decision boundary, they can seriously distort the classifier. Note that the 
logistic and probit regression models behave differently in this respect because the 
tails of the logistic sigmoid decay asymptotically likc exp(- x) for x --> 00, whereas 
for the probit activation function they decay like exp( _ x 2 ), and so the probit model 
can be significantly more sensitive to outliers. 

However, both the logistic and the probit models assume the data is corrcctly 
labelled. The effect of mislabelling is easily incorporated into a probabilistic model 
by introducing a probability f that the target vaJue t has been flipped to the wrong 
vaJue (Opper and Winther, 2oooa), leading to a target value distribution for data point 
x of the form 

p(t lx ) 	 (1 - f)a (x ) + c( J - a(x )) 
f + (1 - 2f)a (x) (4.117) 

where u(x) is the activation function with input vector x. Here ( may be set in 
advance, or it may be treated as a hyperparameter whose value is inferred from the 
data. 

4.3.6 Canonical link functions 
For the linear regression model with a Gaussian noise distribution, the error 

function , corresponding to the negative log likelihood, is given by (3.12). If we take 
the derivative with respect to the parameter vector w of the contribution to the error 
function from a data point n, this takes the form of the 'error' Yn - tn times the 
feature vector <Pn' where Yn = W l'<Pn- Similarly, for the combination of the logistic 
sigmoid activation function and the cross-entropy crror function (4.90), and for the 
soft max activation function with the multielass cross-entropy error function (4.108), 
we again obtain this same simple form. We now show that this is a general resuil 
of assuming a conditional distribution for the target variable from the exponcntial 
family, along with a corresponding choice for the activation function known as the 
canoniclIllinkjunctioll. 

We again make use of the restrictcd form (4.84) of exponential family distribu­
tions. Note that here we are applying the assumption of cxponential family distribu­
tion to the target variable t, in contrast to Section 4.2.4 where we applied it to the 
input vector x. We therefore consider conditional di stribulions of the target variable 
of the form 


p(t l!) , s )=-;1" (t)~ -;
g(!)) exp {'It} . (4.118) 

Using the same line of argument as Icd to the derivation of the result (2.226), we see 
that the conditional mean of t , whieh we denote by Y, is given by 

d 
y == !Ell l!)] = - s-d In q(ril · 	 (4.119) 

r/ 
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Thus y and 'I must related . and we denote this relation through '7 = 1/)(Y) . 
Following Neider and Wedderburn (1972). we define a gell erali~ed lillear lIIodel 

to be one for which 11 is a nonlinear function of a linear combi nali on of lhe input (or 
feature) variables so that 

y = f( wT<I» 	 (4. 120) 

where f(-) is known as lhcaclivulionfimcliol1 in the machine learning literature, and 
f-'(-) is known as the Iillk jill1Clioll in statistics. 

Now consider the log likelihood fun ction for this model, which, as a fun ction of 
'7, is given by 

N N 

In p(t l,).S) = Llnp(t"I').S) = L {ln g ('7n ) + .f},;,,} +00,,"1 (4. 12 1) 
n - 1 n = l 

where we are assuming that all observations share a com mon scale parameter (wh ich 
corresponds to the no ise variance fo r a Gaussian distribution for instance) and so s 
is independent of n. The deri vati ve of the log likelihood with respect to the model 
parameters w is then given by 

N 

,,{ d I ( ) l" } dr,,, dy" " Ilw IlIp(t lrp) = 	 L - ny'fln +- --van 
n=l d'fln .'i tl;t/1I. dan 

N 

= L ~ {tn - Yn} 1j/(Yn)f'(an)<I>n (4. 122) 
n=l 

where an = w T <l>n, and we have used y" = f(a.,,) together wi th the result (4. 11 9) 
for IEltl'l]. We now see that there is a considerable simplification if we choose a 
particular form for the link function J-'(y) given by 

r'(y) = w(y) 	 (4. 123) 

which gives J(1/J(y)) = y and hence f'(1/J)1/J'(y) = 1. Also, because a = f - '(y) . 
we have a. = 1/J and hence f'(o}if/(y) = l. Tn this casc, thc g radient o f lhc crror 
function reduces to 

1 N 
IllnE(w ) = - L{Yn - tn}<I>". (4. 124) 

s 
11,=] 

For the Gaussian s = {3- ' . whereas for the logistic model s = 1. 

The Laplace Approximation 

[n Section 4.5 we shall discuss the Bayesian treatment of logi stic regression. As 
we shall see, this is more complex than the Bayesian treatment of linear regression 
models, discussed in Sections 3.3 and 3.5. Tn parti cular, wc can not integrate cxactly 
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over the parameter vector w since the posterior distribution is no longer Gaussian. 
It is therefore necessary to introduce some form of approximation. Later in the 

Chapter 10 	 book we shall consider a range of techniques based on analytical approximations 
and numerical sampling. Chapter 11 

Here we introduce a simple, but widely used, rramework called the Laplace ap­
proximation, that aims to find a Gaussian approx imation to a probability density 
defined over a set of continuous variables. Consider first the case of a single contin­
uous variable z, and suppose the distribution 1'(z) is defined by 

I 
1'(z) = -ZJ(z) 	 (4. 125) 

where Z = JJ (z) d z is the normalization coefficient. We shall suppose that the 
value of Z is unknown. In the Laplace method the goal is to find a Gaussian approx­
imation q(z) which is ccntred on a mode of the distribution1'(z) . The first step is to 
find a mode of 1'(z) , in other words a point Zo such that 1" (zo) = 0, or equivalently 

(4.126) 

A Gaussian distribution has the property that its logarithm is a quadratic function 
of the variables. We therefore consider a Taylor expansion of In / (z) centred on the 
mode Zo so that 

1
In / (z) '" In/(zo) - - A (z - zo)2 	 (4.127)

2 
where 

2 

A = - dzd 2 In f ez) IZ~Zo 	 (4.128) 

Note that the first-order term in the Taylor expansion does not appear since Zo is a 
local maximum of the distribution. Taking the exponential we obtain 

f ez) '" / (zo) exp { -~ (z - ZO)2}. (4.129) 

We can then obtain a normalized distribution q(z) by making use of the standard 
result for the normalization of a Gaussian, so that 

(A) 1/2 {A 2}
q(z) = 2rr exp -2(z - zo) . (4.130) 

The Laplace approximation is illustrated in Figure 4.14. Note that the Gaussian 
approximation will only be well defined if its precision A > 0, in other words the 
stationary point Zo must be a local maximum, so that the second derivative of / (z) 
at the point Zo is negative. 

O.8 r--~ 

0.6 

0.4 

0.2 

oL-,"",---~ 

-2 -I 

Figure 4.14 lliu 
where a (z) is the 
distribution p(z) il 
right plot shows II 
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Figure 4.14 Illustration of the Laplace approximation applied to the distribution p(z) ex: exp( - z'/2)0" (20z + 4) 
where <7(z) is the logistic sigmoid function defined by O"(z) = (1 + 0--)-1 The left plot shows the normalized 
distribution p(z ) in yellow, together with the Laplace approximation centred on the mode Zu of p(z) in red. The 
right plot shows the negative logarithms of the corresponding curves. 

We can extend the Laplace method to approximate a distribution p(z ) = f(z )/Z 
defined over an M-dimensional space z. At a stationary point Zo the gradient \7J(z ) 
will vanish. Expanding around this stationary point we have 

1
InJ(z) '" InJ(zo ) - '2(z - zo)T A (z - zo) (4.131 ) 

where the M x M Hessian matrix A is defined by 

A = - \7\7lnf(z)l z=zo (4,132) 

and \7 is the gradient operator. Taking the exponential of both sides we obtain 

fez ) '" f(zo) exp { - ~(z - zo)'r A (z - zo) } . (4.133) 

The distribution q(z) is proportional to f(z) and the appropriate normalization coef­
ficient can be found by inspection, using the standard result (2.43) for a normalized 
multi variate Gaussian, giving 

IA lt/ 2 {l }q(z) = ' n ' H I? ex p -'2(z - ZO)T A (z - zo) = N(z lzo, A I) (4.134) 

where IA I denotes the delerminant of A. This Gaussian distribution will be well 
defined provided its precision matrix , given by A, is positive definite, which implies 
that the stationary point Zo must be a local maximum, not a minimum or a saddle 
point. 

In order to apply the Laplace approximation we first need to find the mode Zo, 
and then evaluate the Hessian matrix at that mode, In practice a mode wi ll typi­
cally be found by running some form of numerical optimization algorithm (Bishop 
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Exercise 4.22 

and Nabney. 2008). Many of the distributions encountered in practice will be mul­
timodal and so there will be different Laplace approximations according to which 
mode is being considered. Note that the normalization constant Z of the true distri­
bution does not need to be known in order to apply the Laplace method. As a result 
of the central limit theorem, the posterior distribution for a model is expected to 
become increasingly better approximated by a Gaussian as the number of observed 
data points is increased, and so we would expect the Laplace approximation to be 
most useful in situations where the number of data points is relatively large. 

One major weakness of the Laplace approximation is that, si nce iL is based on a 
Gaussian distribut ion. it is only directly applicab le to real variables. In other cases 
it may be possible to apply the Laplace approximation to a transformation of the 
variable. For insta~e if 0 ~ T < 00 then we can consider a Laplace approximation 
of In T . The most serious limitation of the Laplace framework. however. is that 
it is based purely on the aspects of the true distribution at a specifi c value of the 
variable, and so can fail to capture important global properties. In Chapter 10 we 
shall consider alternative approaches which adopt a more global perspective. 

4.4.1 Model comparison and BIC 

As well as approximating the distribution p(z ) we can also obtain an approxi­
mation to the normalization constant Z. Using the approx imation (4.133) we have 

Z = JJ (z ) dz 

'" J (zo ) Jcxp { - ~ ( z - ZO ) T A (z ­ zo )} dz 

. 
J(zo) 

(2rr)"/2 
IAI I / 2 (4.135) 

where we have noted that the integrand is Gaussian and made use uf the standard 
result (2.43) for a normalized Gaussian distribution. We can use the result (4.135) to 
obtain an approximation to the model evidence which, as discussed in Section 3.4, 
plays a central role in Bayesian model comparison. 

Consider a data set D and a set of models {M;} having parameters {O;}. For 
each model we define a likelihood function p (D IO'i , M i) . If we introduce a prior 
p(Oi IM i) over the parameters, then we are interested in computing the model evi­
dence p(DIMi) for the various models. From now on we omit the conditioning on 
M i to keep the notation uncluttered. From Bayes' theorem the model evidence is 
given by 

p(D) = Jp(DIO)p(O) dO. (4.136) 

Identifying J(O ) = p(DIO)p(O) and Z = p(D), and app lying the result (4. 135), we 
obtain 

M 1 
11l[J(D) '" Inp(DIOMA P) + ~ n[J (OMAP ) + -z ln (2rr) - 211l 1A ~ (4.137) 
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where IIMAP is the value of II at the mode of the posterior distribution, and A is the 
Hessian matri x of second derivatives of the negative log posterior 

A = - \7\7lnp(D IIIMAP)Jl(IIMA r ) = - \7\71np(IIMApID) . (4.138) 

The first term on the right hand side of (4.1 37) represents the log likelihood evalu­
ated usi ng the optimized parameters, while the remaining three terms compri se the 
'Occam factor' which pcnalizes model complexity. 

If we assume that the Gaussian prior di stribution over parameters is broad, and 
that the Hessian has full rank, then we can approximate (4.137) very roughly using 

1 
Inp(D) "" III Jl (D IIiMAP ) - 2M In N (4. 139) 

where N is the number of data points, M is the number of parameters in II and 
we have omitted additive constants. This is known as the Bayesian Ill/ormation 
Criterion (BIC) or the Schwarc criterion (SchwarL, 1978). Note that, compared to 
AlC given by ( 1.73), this penalizes model complexi ty more heavily. 

Complexity measures such as AIC and BIC have the virtue of being easy to 
evaluate, but can also give misleading result s. In particular, the assumption that the 
Hessian matrix has full rank is often not valid since many of the parameters are not 
' well-determined '. We can use the result (4. 137) to obtain a more accurate estimate 
of the mode l evidence starting from the Laplace approximation. as we illustrate in 
the context of neural networks in Section 5.7. 

Bayesian Logistic Regression 

We now turn to a Bayesian treatment of logi stic regression. Exact Bayesian infer­
ence for logistic regression is intractable. In particular. evaluation of the posterior 
distribution would require normalization of the product of a prior distribution and a 
likelihood function that itself comprises a product of logistic s igmoid functions, onc 
for every data point. Evaluation of the predictive distribution is similarly intractable. 
Here we consider the application o f the taplace approximation to the problem of 
Bayesian logi stic regression (Spiegelhalter and Lauritzen, 1990; MacKay, I 992b). 

4.5.1 Laplace approximation 
Recall from Section 4.4 that the Laplace approximation is obtained by findin g 

the mode of the posterior distribution and then fittin g a Gaussian centred at that 
mode. This requires evaluation of the second derivatives of the log posterior, which 
is equivalent to finding the Hessian matrix . 

Because we seek a Gaussian representation for the posterior distribution, it is 
natural to begin with a Gaussian prior. which we write in the general form 

p(w ) = N (w lmo, So) (4. 140) 
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where m o and So are fixed hyperparameters. The posterior distribution over w is 
given by 

p(w lt ) IX p(w)p(t lw ) (4.141) 

where t = (t ... , tN)"1'. Taking the log of both sides, and substituting for the prior 
"distribution using (4.140), and for the likelihood function using (4.89), we obtain 

1 T 1
Inp(wlt ) -2(w - m o) So (w - m ol 

N 

+ L {In InYn + (1- t,,) In (l - V,,)} + const (4.142) 
n = l 

•
where Yn = a(w T ¢rJ. To obtain a Gaussian approximation to the posterior dis­
tribution, we first maximize the posterior distribution to give the MAP (maximum 
posterior) solution W MA p, which defines the mean of the Gaussian. The covariance 
is then given by the inverse of the matrix of second derivatives of the negative log 
likelihood, which takes the form 

N 

SN = - \7\7ln J!(w lt ) = SOl + L y,,(I- y,,) 1>n1>;'· (4.143) 
n = l 

The Gaussian approximation to the posterior distribution therefore takes the form 

q(w) = N(wlwMAP , SN) ' (4.144) 

Having obtained a Gaussian approximation to the posterior distribution, there 
remains the task of marginalizing with respect to this di stribution in order to make 
predictions. 

4.5.2 Predictive distribution 

The predictive distribution for class C given a new feature vector 1>(x), is 
" obtained by marginalizing with respect to the posterior distribution p(wlt), which is 

itself approximated by a Gaussian distribution q(w) so that 

p(C, I1>, t) = Jp(Cd1>, w )p(w lt ) dw '" J!I(wT 1»q(w) dw (4.145) 

with the corresponding probability for class C, given by p(C2 11>,t) = 1 - p(C, I1>, t ). 
To evaluate the predictive distribution, we first note that the function !I(w T 1» de­
pends on w only through its projection onto 1>. Denoting (L = W T 1>, we have 

(4.146) 

where S(-) is the Dirac delta function. From this we obtain 

J<I(w T 1»q(w )dw = J!I(a)p(a)da (4.147) 
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wherc 

pta) = J6(0. - W T </»q(w ) dw. (4. 148) 

We can evaluate pta) by noting that the delta function imposes a linear constraint 
on wand so forms a marginal distribution from the joint distribution q(w) by inte­
grating out all directions orthogonal to </>. Because q(w) is Gaussian, we know from 
Section 2.3.2 that the marginal distribution will also be Gaussian. We can evaluate 
the mean and covariance of this distribution by taking moments, and interchanging 
the order of integration over a and w , so that 

T TI'a = lE la] = p(a)ada = q(w )w </>dw = wMAP</> (4. 149)J J 
where we have used the result (4. 144) forthe variational posterior distribution q( w). 
Similarly 

2 aa = varia ] = Jpta) {a2 
- IE laf} da 

Jq(w ) {(WT</» 2 - (rnj;</»2} <lw = </>T SN</>. (4. 150) 

Note that the distribution of a takes the same form as the predictive distribution 
(3.58) for the linear regression model, with the noise variance set to zero. Thus our 
variational approximation to the predictive distribution becomes 

p(C, I!) = Ja(a)p(a) do. = J<7(o.)N (alf.la, a~) da. (4.151) 

This result can also be derived directly by making use of the results for the margi nal 
of a Gaussian distribution given in Section 2.3.2. 

The integral over a represents the convolution of a Gaussian with a logistic sig­
moid, and cannot be evaluated analytically. We can, however, obtain a good approx­
imation (Spiegelhalter and Lauritzen, 1990; MacKay, 1992b; Barber and Bishop, 

•1998a) by making use of the close similarity between the logistic sigmoid function 
<7(a) defined by (4.59) and the probit function <I> (a) defined by (4.114). Tn order to 
obtain the best approximation to the logistic function we need to fe- scale the hori­
zontal axis, so that we approximate 17 (0. ) by <I>(Aa). We can find a suitabl e value of 
A by requiring that the two functions have the same slope at the origin, which gives 
A2 = 1f/ 8. The similarity of the logistic sigmoid and the probit function , for th is 
choice of A, is illustruted in Figure 4.9. 

The advantage of using a probit function is that its convolution with a Gaussian 
can be expressed analytically in terms of another probit function. Specifically we 
can show that 

2 (4.152)J<I> (Aa)N (allt, (7 ) dl1. = <I> CA- 2 :"0-2)1 /2 ). 



. 

, 

, 

220 4. LiNEAR MODELS FOR CLASSIFICATION 

We now apply the approximation atlJ ) '" <li (Aa) to the probit functions appearing 
on both sides of this equation . leading to the following approximation for the convo­
lution of a logistic sigmoid with a Gaussian 

4 

(4. 153) 

4where we have defined 
(4.154) 

Applying this result to (4.151) we obtain the approximate predictive distribution 
in the form 4 

(4.155) 

where 1-'" and 0';' are defined by (4 .149) and (4.150). respectively. and 1«0';') is de­ 4. 
fined by (4.154). 

Note that the decision boundary corresponding to p(edel>,t ) = 0. 5 is given by 
ILa = 0, which is the same as the deci sion boundary obtained by using the MAP 
value for w. Thus if the deci sion criterion is based on minimizing miscJassifica­

tion rate, with equal prior probabilities, then the marginalization over w has no ef­ 4. 

fect. However, for more complex decision criteria it will play an important rolc. 

Marginalization of the logi stic sigmoid model under a Gaussian approximation to 


4.the posterior distribution will be illustrated in the context of variational inference in 
Figure 10.13. 

4. 
Exercises 

4.1 	 (* *) Given a set of data points {x,,}, we can define the convex hull to be the set of 
all points x given by 

(4.156) 

where an ): 0 and Ln a,! = 1. Consider a second set of points {Yn} together with 
their corresponding convex hull. By definition, the two sets of points will be linearly 
separable if there exists a vector wand a scalar Wo such that w'T' X n + 'lVo > 0 for all 
x,,, and ViT Yn +Wo < 0 for all Y n ' Show that if their convex hulls intersect, the two 
sets of points cannot be linearly separable, and conversely that if they are linearly 
separable, their convex hulls do not intersect. 

4.2 	 (**) m!i!I Consider the minimi zation of a sum-of-squares error function (4.15), 
and suppose that all or the target vectors in the training set satisry a linear constraint 

(4,157) 

where t n corresponds to the n th row of the matrix T in (4.15). Show that as a 
consequence of this constraint, the elements of the model prediction y (x ) given by 
the least-squares solution (4.17) also sati sfy this constraint, so that 

aTy (x) + b = O. 	 (4 .158) 
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To do so, assume that one of the basis functions <l>o(x) = 1 so that the corresponding 
parameter 'Wo plays the role of a bias. 

4.3 	 (**) Extend the result of Exercise 4,2 to show that if multiple linear constraints 
are satisfied simultaneously by the target vectors, then the same constraints will also 
be satisfied by the least-squares prediction of a linear model. 

4.4 	 (*) 1m Show that maximization of the class separation criterion given by (4.23) 
with respect to w , using a Lagrange mUltiplier to enforce the constraint w T w = 1, 
leads to the result that w ex (m 2 - m ,). 

4.5 	 (*) By making use of (4.20), (4.23), and (4.24), show that the Fisher criterion (4 .2S) 
can be written in the form (4,26), 

4.6 	 (*) Using the definitions of the between-class and within-class covariance matrices 
given by (4.27) and (4.28), respectively, together with (4.34) and (4.36) and the 
choice of target values described in Section 4.I.S , show that the expression (4.33) 
that minimizes the sum-of-squares error function can be written in the form (4,37). 

4.7 	 (*) 1m Show that the logistic sigmoid function (4.S9) satisfies the property 
a(-a) = 1 - a(a) and that its inverse is given by 17 -

1 (y) = In {YI( ] - v)}. 

4.8 	 (*) Using (4,S7) and (4,S8), derive the result (4.6S) for the posterior class probability 
in the two-class generative model with Gaussian densities, and verify the results 
(4.66) and (4.67) for the parameters wand Wo . 

4.9 	 (*) 1m Consider a generative classification model for f( classes defined by 
prior class probabilities 1'(C.) = trk and general class-conditional densities p( <l>ICk ) 

where <I> is the input feature vector. Suppose we are given a training data set {<I>n . t,,} 
where n = ] , ... , N, and t" is a binary target vector of length f( that uses the I-of­
f( coding scheme, so that it has components tnj = Ijk if pattern n is from class C • . 
Assuming that the data points are drawn independently from this model, show that 
the maximum-likelihood solution for the prior probabilities is given by 

N. 
7fk =i -	 (4.IS9)

N 

where Nk is the number of data points assigned to class Ck . 

4.10 	 (**) Consider the classification model of Exercise 4.9 and now suppose that the 
class-conditional densities are given by Gaussian distributions with a shared covari­
ance matrix, so that 

p(<I>ICk) = N(<I>IILk ' ~). 	 (4. 160) 

Show that the maximum likelihood solution for the mean of the Gau~sian distribution 
for class Ck is given by 

1 N 

ILk = -N L tnk<Pn (4. 161 ) 
k 

n = l 
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which represents the mean of those feature vectors assigned to class Ck • Similarly, 
show that the maximum likelihood solution for the shared covariance matrix is given 
by 

(4.162) 

where 
1 N 

Sk = N L tnk(<I>n - l-'k)(<I>" - l-'k)T (4.163) 
k n = l 

Thus 1: is given by a weighted average of the covariances of the data associated with 
each class, in whieh.the weighting coefficients arc given by the prior probabilities of 
the classes. 

4.11 	 (**) Consider a classification problem with K classes for which the feature vector 
<I> has M components each of which can take L discrete states. Let the values of the 
components be represented by a I-of-£ binary coding scheme. Further suppose that, 
conditioned on the class C .. the M components of <I> are independent, so that the 
class-conditional density factorizes with respect to the feature vector components. 
Show that the quantities ak given by (4.63), which appear in the argument to the 
softmax function describing the posterior class probabilities, are linear functions of 
the components of <1> . Note that this represents an example of the naive Bayes model 
which is discussed in Section 8.2.2. 

4.12 	 (*) I!m!lD Verify .the relation (4.88) for the derivative of the logi stic sigmoid func­
tion defined by (4.59). 

4.13 	 (*) I!m!lD By making use of the result (4.88) for the derivative of the logistic sig­
moid, show that the derivative of the error function (4.90) for the logistic regression 
model is given by (4.91). 

4.14 	 (*) Show that for a linearly separable data set, the maximum likclihood solution 
for the logistic regression model is obtained by finding a vector w whose decision 
boundary w T <I>(x) = 0 separates the classes and then taking the magnitude of w to 
infinity. 

4.15 	 (**) Show that the Hessian matrix H for the logistic regression model, given by 
(4.97), is positive definite. Here R is a diagonal matrix with elements y,,(l - Yn), 
and Yn is the output of the logistic regression model ror input vector X n. Hence show 
that the error function is a concave function of wand that it has a unique minimum. 

4.16 	 (*) Consider a binary classification problem in which each observation x" is known 
to belong to one of two classes, corresponding to I, = 0 and t = 1, and suppose that 
the procedure for collecting training data is imperfect, so that training points are 
sometimes mislabelled. For every data point x"' instead of having a value I. for the 
class label, we have instead a value "n representing the probability that tn = 1. 
Given a probabilistic model 1* = 11<1», write down the log likelihood function 
appropriate to such a data set. 
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4.17 	 (*) mB Show that the derivatives of the softmax activation function (4.104), 
where the ak are defined by (4.105), are given by (4.106). 

4.18 	 (*) Using the result (4.91) for the derivatives of the soft max activation function, 
show that the gradients of the cross-entropy eITor (4.108) are given by (4.109). 

4.19 	 (*) mB Write down expressions for the gradient of the log likelihood, as well 
as the corresponding Hessian matrix, for the probit regression model defined in Sec­
tion 4.3.5. These are the quantities that would be required to train such a model using 
TRLS. 

4.20 (* *) Show that the Hessian matrix for the multiclass logistic regression problem, 
defined by (4.1 10), is positive semidefinite. Note that the full Hessian matrix for 
this problem is of size M K x M K, where M is the number of parameters and K 
is the number of classes. To prove the positive semidefinite property, consider the 
product u THu where u is an arbitrary vectoroflength M K, and then apply Jensen's 
inequality. 

4.21 (*) Show thatthe probit function (4.1 14) and the erf function (4.115) are related by 
(4.116). 

4.22 (*) Using the result (4.135), derive the expression (4.137) for the log model evi­
dence under the Laplace approximation. 

4 .23 (**) mB In this exercise, we derive the SIC result (4.139) starting from the 
Laplace approximation to the model evidence given by (4.137). Show that if the 
prior over parameters is Gaussian of the form p(8) = N(81m, Vol, the log model 
evidence under the Laplace approximation takes the form 

1 TIl
Inp(D) "" 11l1,(DIOMAP) - 2(OMAP - m ) Vo (OMAP - m) - 2 1n IH I + eOllst 

where H is the matrix of second derivatives of the log likelihood Inp(DI8) evaluated 
at 8 MAP ' Now assume that the prior is broad so that V,,' is small and the second 
term on the right-hand side above can be neglected. Furthermore, consider the case 
of independent, identically distributed data so that H is the Slllll of terms one for each 
data point. Show that the log model evidence can then be written approximately in 
the form of the BIC expression (4. 139). 

4.24 	 (**) Use the results from Section 2.3.2 to derive the result (4. 151 ) forthe marginal­
ization of the logistic regression model with respect to a Gaussian posterior distribu­
tion over the parameters w. 

4.25 	 (* *) Suppose we wish to approximate the logi stic sigmoid ala) defined by (4.59) 
by a scaled probit function <I>('xa), where <I.>(a) is defined by (4.1 14). Show that if 
,.\ is chosen so that the derivatives of the two functions are equal at a = 0, then 
,X2 = 7r/8. 
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4.26 (* *) In this exercise, we prove the relation (4.152) ror the convolution of a probit 
function with a Gaussian distribution. To do this, show that the derivative or the lert­
hand side with respect to I' is equal to the derivative of the right-hand side, and then 
integrate both sides with respect to I' and then show that the constant of integration 
vanishes. Note that before differentiating the left-hand side, it is convenient first 
to introduce a change of variable given by a = I' + az so that the integral over a 
is replaced by an integral over z. When we dirrerentiate the left-hand side or the 
relation (4.152), we will then obtain a Gaussian integral over z that can be evaluated 
analytically. 


