In the previous chapter, we explored a class of regression models having particularly
simple analytical and computational properties. We now discuss an analogous class
of models for solving classification problems. The goal in classification is to take an
input vector x and to assign it to one of K discrete classes Cj where k = 1,..., K.
In the most common scenario, the classes are taken to be disjoint, so that each input is
assigned to one and only one class. The input space is thereby divided into decision
regions whose boundaries are called decision boundaries or decision surfaces. In
this chapter, we consider linear models for classification, by which we mean that the
decision surfaces are linear functions of the input vector x and hence are defined
by (D — 1)-dimensional hyperplanes within the D-dimensional input space. Data
sets whose classes can be separated exactly by linear decision surfaces are said to be
linearly separable.

For regression problems, the target variable t was simply the vector of real num-
bers whose values we wish to predict. In the case of classification, there are various
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ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable ¢ € {0, 1} such that ¢ = 1 represents class C,
and t = 0 represents class C,. We can interpret the value of 1 as the probability that
the class is Cy, with the values of probability taking only the extreme values of () and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is C;, then all elements /;. of t are zero
except element £, which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t=(0,1,0,0,0)". 4.1)

Again, we can interpret the value of #; as the probability that the class is Cy.. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ci|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Cy|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Cy ), together with the prior probabilities p(Cy.) for the classes. and then
we compute the required posterior probabilities using Bayes” theorem

p(x|Cx )p(Cr)

R

. (4.2)
We shall discuss examples of all three approaches in this chapter.

In the linear regression models considered in Chapter 3, the model prediction
y(x.w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
w'x + wyp, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f( - ) so that

y(x)=f (wa + L['[)) . (4.3)

In the machine learning literature f( - ) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wx + wy = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(-) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models
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(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(-). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions ¢(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x. while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Cy.. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

41.1 Two classes

The simplest representation of a linear discriminant function is obtained by tak-
ing a linear function of the input vector so that

y(x) = wrx + wo (4.4)

where w is called a weight vector, and wy is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C; if y(x) = 0 and to class C, otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D — 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points x, and xp both of which lie on the decision surface.
Because y(x4) = y(xg) = 0, we have w' (x4 — xp) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by
-

oM ... (4.5)

[[wl lwl
We therefore see that the bias parameter wy determines the location of the decision
surface. These properties are illustrated for the case of D) = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-

pendicular distance 7 of the point x from the decision surface. To see this, consider
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Figure 4.1 lllustration of the geometry of a 4

linear discriminant function in two dimensions. y=>0 T2
The decision surface, shown in red, is perpen- y =10

dicular to w, and its displacement from the y<0 Ry
origin is controlled by the bias parameter wy. Ro

Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given

by y(x)/|w]|.

an arbitrary point x and let x | be its orthogonal projection onto the decision surface,
so that -
X=X, +r——:. (4.6)
[[wll
Multiplying both sides of this result by w™ and adding wy, and making use of y(x) =
wlix + wyand y(x ) = wTx | +wy = 0, we have

y(x)

r=—, (4.7)
[w]

This result is illustrated in Figure 4.1.

As with the linear regression models in Chapter 3, it is sometimes convenient
Lo use a more compact notation in which we introduce an additional dummy ‘input’
value g = 1 and then define w = (wy, w) and X = (zg, x) so that

y(x) = wIx. (4.8)

In this case, the decision surfaces are [)-dimensional hyperplanes passing through
the origin of the D) + 1-dimensional expanded input space.

4.1.2 Multiple classes

Now consider the extension of linear discriminants to K > 2 classes. We might
be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of /' —1 classifiers each of which solves a two-class problem of
separating points in a particular class C. from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an
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(6}
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not C;

not Cz

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Cx from points not in class Cx. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes C. and C;.

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to introduce K(K — 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K -class discriminant
comprising K linear functions of the form

k(%) = Wi X + wio (4.9)

and then assigning a point x to class Cy, if yx(x) > y;(x) forall j # k. The decision
boundary between class Cy and class C; is therefore given by yx(x) = y;(x) and
hence corresponds to a () — 1)-dimensional hyperplane defined by

(Wi — w;) "% + (wio — wjo) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points X and xp; both of which lie inside decision
region R, as illustrated in Figure 4.3. Any point X that lies on the line connecting
x, and xg can be expressed in the form

X=MAxp+(1—AN)xg (4.11)
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Figure 4.3

lllustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points x5
and xg both lie inside the same decision re-
gion R, then any point x that lies on the line
connecting these two points must also lie in
Ry, and hence the decision region must be
singly connected and convex.

X A o= 4

where () << A < 1. From the linearity of the discriminant functions, it follows that
yk(X) = Ayk(xa) + (L — ANye(xs). (4.12)

Because both x4 and x; lie inside Ry, it follows that y(x4) > w;(xa). and
yk(xp) > yj(xp), for all j # k, and hence yx(X) > y;(X), and so X also lies
inside Ry.. Thus Ry is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y; (x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification

In Chapter 3, we considered models that were linear functions of the parame-
ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with A classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Cy, is described by its own linear model so that

Yr(x) = Wi X + wko C o (4.13)

where k = 1,..., K. We can conveniently group these together using vector nota-
tion so that o
y(x) = W'k (4.14)
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where W is a matrix whose k' column comprises the D) + 1-dimensional vector
Wi = (wko, W )" and X is the corresponding augmented input vector (1,x")" with
a dummy input r, = 1. This representation was discussed in detail in Su,l:on 3.1LA
new input X is then assigned to the class for which the output y), = W} X is largest.

We now determine the parameter matrix W by minimizing a sum-of-squares
error function, as we did for regression in Chapter 3. Consider a training data set
{36, B } wheren = 1, .., N, and define a matrix T whose n'" row is the vector t ],
together with a matrix X whose n'® row is X!'. The sum-of-squares error function
can then be written as

ED(W):%Tr{(iW—T)T(inT)}. (4.15)

Setting the derivative with respect to W to zero, and rearranging, we then obtain the
solution for W in the form

W = (XTX)"1XTT = XiT (4.16)

where X1 is the pseudo-inverse of the matrix X, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

N iy T
y(x) = WT% = TT (X*) 3 (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTt, +b=0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so that N
aly(x)+b=0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0,1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutions
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x;, 2:2), having the property that lin-
car decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant

One way to view a linear classification model is in terms of dimensionality
reduction. Consider first the case of two classes, and suppose we take the D-
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-6 -4 =2 0 ) 4 6 - -4 =2 0 2 4 6
igure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
x), green (+), and blue (c¢). Lines denote the decision boundaries, and the background colours denote the
sspective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
at the region of input space assigned to the green class is too small and so most of the points from this class

re misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
orrect classification of the training data.

dimensional input vector x and project it down to one dimension using
.
Y =W X. (4.20)

If we place a threshold on y and classify y > —wy as class C;, and otherwise class
C,, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original IJ)-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are Ny points
of class C; and N points of class Ca, so that the mean vectors of the two classes are

given by
1 il
m; = E Z Xn, ms = FZ Z Xn- (4.21)
neCy n &€ Cy

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
o maximize

M — My = W1 (m; — my) (4.22)

where
me = wm; (4.23)
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=2
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

Appendix E
Exercise 4.4

Exercise 4.5

is the mean of the projected data from class C,. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that >, w? = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find that
w o (msy —my ). There is still a problem with this approach, however, as illustrated
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (2, z,) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Cy, is therefore given by

2= (yn—mi)? (4.24)
nely
where 4, = w'x,. We can define the total within-class variance for the whole

data set to be simply s7 + 3. The Fisher criterion is defined to be the ratio of the
between-class variance to the within-class variance and is given by

(mg —my)?
3% 453

J(w) = (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the form
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wTSpw
J = — 4.26
(w) wi'Sww (4.26)
where Sy is the between-class covariance matrix and is given by
SB = (le = ml)(mg == ml)T (427)

and Syy is the total within-class covariance matrix, given by

Sw = Z (%n —my ) (x, —my)T + Z (X, — my)(x, —msy)T. (4.28)
neCy neCa

Differentiating (4.26) with respect to w, we find that J(w) is maximized when
(WISEwW)Sww = (WTSww)Spw. (4.29)

From (4.27), we see that S;;w is always in the direction of (m; —m; ). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSpw) and (w'Syww). Multiplying both sides of (4.29) by Sy
we then obtain

w x Sy (mz — my). (4.30)

Note that if the within-class covariance is isotropic, so that Sy is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y, so that we classify a new
point as belonging to C; if y(x) > y, and classify it as belonging to Cs otherwise.
For example, we can model the class-conditional densities p(y|Cy) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares

The least-squares approach to the determination of a linear discriminant was
based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for



190 4. LINEAR MODELS FOR CLASSIFICATION

Exercise 4.6

the weights becomes equivalent to the Fisher solution (Duda and Hart, 1973). In

particular, we shall take the targets for class C; to be N/Ny, where N, is the number

of patterns in class C;, and N is the total number of patterns. This target value

approximates the reciprocal of the prior probability for class C;. For class C,, we

shall take the targets to be — N /N, where N is the number of patterns in class Cs.
The sum-of-squares error function can be written

= %Z w Txp +wo —t, )2. (4.31)

Setting the derivatives of £ with respect to w, and w to zero, we obtain respectively

N
Z (wan + wy — tn) = 0 (4.32)
n=1
N
> (W +wo—ta)xn = 0. (4.33)
n=1

From (4.32), and making use of our choice of target coding scheme for the ¢,,, we
obtain an expression for the bias in the form

wy = —W'm (4.34)
where we have used

N N
=N— — 3
Y ta=Ny 5= Mg = (4.35)

and where m is the mean of the total data set and is given by
1 1
=5 z:l X = 27 (Nimy + Nomy). (4.36)

After some straightforward algebra, and again making use of the choice of ¢,,, the
second equation (4.33) becomes

(Sw PR L Sn) w = N(m; — m,) (4.37)

where Sy is defined by (4.28), Sy is defined by (4.27), and we have substituted for
the bias using (4.34). Using (4.27), we note that Sgw is always in the direction of
(mg — m; ). Thus we can write

w x Sy (my — my) (4.38)

where we have ignored irrelevant scale factors. Thus the weight vector coincides
with that found from the Fisher criterion. In addition, we have also found an expres-
sion for the bias value wq given by (4.34). This Lells us that a new vector x should be
classified as belonging to class C; if y(x) = wT(x—m) > 0 and class C; otherwise.
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4.1.6 Fisher’s discriminant for multiple classes

We now consider the generalization of the Fisher discriminant to &' > 2 classes,
and we shall assume that the dimensionality D of the input space is greater than the
number K of classes. Next, we introduce D’ > 1 linear ‘features’ y = ng, where
k = 1,..., D" These feature values can conveniently be grouped together to form
a vector y. Similarly, the weight vectors {w},} can be considered to be the columns
of a matrix W, so that

y = W'k, (4.39)

Note that again we are not including any bias parameters in the definition of y. The
generalization of the within-class covariance matrix to the case of K classes follows
from (4.28) to give

K
Sw = Z Sk (4.40)

k=1

where
S, = Z (Xn, = mk)(xn - mk)T (4.41)
neCy
1
mye = o) X 4.42)
neCy

and Ny, is the number of patterns in class Cy. In order to find a generalization of the
between-class covariance matrix, we follow Duda and Hart (1973) and consider first
the total covariance matrix

N
St = Z(xn — m)(xn = m)T (4.43)

n=1

where m is the mean of the total data set

1 N 1 K
m= = an =% Y Nymy, (4.44)
k=1

n=1

and N = ), Ny is the total number of data points. The total covariance matrix can
be decomposed into the sum of the within-class covariance matrix, given by (4.40)
and (4.41), plus an additional matrix Sg, which we identify as a measure of the
between-class covariance

St =Sw+ S8 (4.45)

where
K

Sg = Z Ni(my — m)(my —m)?. (4.46)

k=1
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These covariance matrices have been defined in the original x-space. We can now
define similar matrices in the projected D'-dimensional y-space

K
sw=_ 3 (¥n— m)(¥n— )" (4.47)
k=1 neCy
and ;
1€
Sy = Z Ni(py — p) (g, — )" (4.48)
k=1
where .
) 1 § e
Pe = N Z Yns H=5 Z N py.. (4.49)
ncCy k=1

Again we wish to construct a scalar that is large when the between-class covariance
is large and when the within-class covariance is small. There are now many possible
choices of criterion (Fukunaga, 1990). One example is given by

J(W)=Tr{sy'ss}. (4.50)

This criterion can then be rewritten as an explicit function of the projection matrix
W in the form N
J(w) =Tr{(WSyW") ' (WSgWT')}. (4.51)

Maximization of such criteria is straightforward, though somewhat involved, and is
discussed at length in Fukunaga (1990). The weight values are determined by those
eigenvectors of Sy, Sy that correspond to the 1)’ largest eigenvalues.

There is one important result that is common to all such criteria, which is worth
emphasizing. We first note from (4.46) that Sy is composed of the sum of A ma-
trices, each of which is an outer product of two vectors and therefore of rank 1. In
addition, only (K — 1) of these matrices are independent as a result of the constraint
(4.44). Thus, Sy has rank at most equal to (/' — 1) and so there are at most (K — 1)
nonzero eigenvalues. This shows that the projection onto the (A — 1)-dimensional
subspace spanned by the eigenvectors of Si does not alter the value of J(w), and
so we are therefore unable to find more than (K — 1) linear ‘features’ by this means
(Fukunaga, 1990).

4.1.7 The perceptron algorithm

Another example of a linear discriminant model is the perceptron of Rosenblatt
(1962), which occupies an important place in the history of pattern recognition al-
gorithms. It corresponds to a two-class model in which the input vector x is first
transformed using a fixed nonlinear transformation to give a feature vector ¢(x),
and this is then used to construct a generalized linear model of the form

y(x) = f (who(x)) 4.52)
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where the nonlinear activation function f(-) is given by a step function of the form

| 1, az(
f(a) _{ T azZo ¢hat

The vector ¢p(x) will typically include a bias component ¢g(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which ¢ € {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C; and t = —1 for class Cy, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuitics wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns x,, in class C; will have WTq‘b(xn) > (, whereas patterns x,, in class Cy
have w'¢(x,) < 0. Using the t € {—1,+1} target coding scheme it follows that
we would like all patterns to satisfy w'¢p(x,,)t,, > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern x,, it tries to minimize the quantity —w" ¢(x,, )t,,. The perceptron
criterion is therefore given by

Ep(w) ==Y W'ty (4.54)

neM
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where M denotes the set of all misclassified patterns. The contribution to the error
associated with a particular misclassified pattern is a linear function of w in regions
of w space where the pattern is misclassified and zero in regions where it is correctly
classified. The total error function is therefore piecewise linear.

We now apply the stochastic gradient descent algorithm to this error function.
The change in the weight vector w is then given by

w(™D) = w(™ _ gV Ep(w) = w™ 4 5o, t, (4.55)

where 77 is the learning rate parameter and 7 is an integer that indexes the steps of
the algorithm. Because the perceptron function y(x. w) is unchanged if we multiply
w by a constant, we’ can set the learning rate parameter 1 equal to 1 without of
generality. Note that, as the weight vector evolves during training, the set of patterns
that are misclassified will change.

The perceptron learning algorithm has a simple interpretation, as follows. We
cycle through the training patterns in turn, and for each pattern x,, we evaluate the
perceptron function (4.52). If the pattern is correctly classified, then the weight
vector remains unchanged, whereas if it is incorrectly classified, then for class C,
we add the vector ¢(x,,) onto the current estimate of weight vector w while for
class Co we subtract the vector ¢(x,,) from w. The perceptron learning algorithm is
illustrated in Figure 4.7.

If we consider the effect of a single update in the perceptron learning algorithm,
we see that the contribution to the error from a misclassified pattern will be reduced
because from (4.55) we have

LW{T+1)T¢th = _W(T)quntﬂ - (¢ntn)T¢ni‘n < —W(T)'l‘d’nln (456)

where we have set 7 = 1, and made use of ||¢,t,[|* > 0. Of course, this does
not imply that the contribution to the error function from the other misclassified
patterns will have been reduced. Furthermore, the change in weight vector may have
caused some previously correctly classified patterns to become misclassified. Thus
the perceptron learning rule is not guaranteed to reduce the total error function at
each stage.

However, the perceptron convergence theorem states that if there exists an ex-
act solution (in other words, if the training data set is linearly separable), then the
perceptron learning algorithm is guaranteed to find an exact solution in a finite num-
ber of steps. Proofs of this theorem can be found for example in Rosenblatt (1962),
Block (1962), Nilsson (1965), Minsky and Papert (1969), Hertz e al. (1991), and
Bishop (1995a). Note, however, that the number of steps required to achieve con-
vergence could still be substantial, and in practice, until convergence is achieved,
we will not be able to distinguish between a nonseparable problem and one that is
simply slow to converge.

Even when the data set is linearly separable, there may be many solutions, and
which one is found will depend on the initialization of the parameters and on the or-
der of presentation of the data points. Furthermore, for data sets that are not linearly
separable, the perceptron learning algorithm will never converge.
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Figure 4.7 lllustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (¢1, ¢2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
n green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered,
ndicated by the green circle, and its feature vector is again added to the weight vector giving the decision
poundary shown in the bottom right plot for which all data points are correctly classified.
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Figure 4.8 lllustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs
were obtained using a simple camera system in which an input scene, in this case a printed character, was
iluminated by powerful lights, and an image focussed onto a 20 x 20 array of cadmium sulphide photocells,
giving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph,
which allowed different configurations of input features to be tried. Often these were wired up at random to
demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern
digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was
implemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby
allowing the value of the weight to be adjusted automatically by the learning algorithm.

Aside from difficulties with the learning algorithm, the perceptron does not pro-
vide probabilistic outputs, nor does it generalize readily to A > 2 classes. The most
important limitation, however, arises from the fact that (in common with all of the
models discussed in this chapter and the previous one) it is based on linear com-
binations of fixed basis functions. More detailed discussions of the limitations of
perceptrons can be found in Minsky and Papert (1969) and Bishop (1995a).

Analogue hardware implementations of the perceptron were built by Rosenblatt,
based on motor-driven variable resistors to implement the adaptive parameters w;.
These are illustrated in Figure 4.8, The inputs were obtained from a simple camera
system based on an array of photo-sensors, while the basis functions ¢ could be
chosen in a variety of ways, for example based on simple fixed functions of randomly
chosen subsets of pixels from the input image. Typical applications involved learning
to discriminate simple shapes or characters.

At the same time that the perceptron was being developed, a closely related
system called the adaline, which is short for ‘adaptive linear element’, was being
explored by Widrow and co-workers. The functional form of the model was the same
as for the perceptron, but a different approach to training was adopted (Widrow and
Hoff, 1960; Widrow and Lehr, 1990).

4.2. Probabilistic Generative Models

We turn next to a probabilistic view of classification and show how models with
linear decision boundaries arise from simple assumptions about the distribution of
the data. In Section 1.5.4, we discussed the distinction between the discriminative
and the generative approaches to classification. Here we shall adopt a generative
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Figure 4.9 Plot of the logistic sigmoid function
a(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function ®(\a), for A = /8,
shown in dashed blue, where ®(a)
is defined by (4.114). The scal-
ing factor 7/8 is chosen so that the
derivatives of the two curves are
equal for a = (.

05¢r
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approach in which we model the class-conditional densities p(x|Cy,), as well as the
class priors p(Cy), and then use these to compute posterior probabilities p(Cy|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C, can be written as

p(x|C1)p(Cy)
p(x|C1)p(C1) + p(x|C2)p(C2)

1
= _— = , 4‘
1 +exp(—a) o{e) (437

p(C1|x)

where we have defined ,
p(x|C1)p(Cy)

p(x|C2)p(C2)
and o (a) is the logistic sigmoid function defined by
B 1
" 1+exp(—a)

(4.58)

a=1In

ala) (4.59)
which is plotted in Figure 4.9. The terms ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a *squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

o(—a)=1-o(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a:hl( 7 ) (4.61)

l—0o

and is known as the logit function. It represents the log of the ratio of probabilities
In [p(Cy|x)/p(Ca|x)] for the two classes, also known as the log odds.
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Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(x|Cx)p(Cr)
>, p(x[C;)p(C;)
exp(ay)

ol (4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities a;. are defined by

p(Ck|x)

aj. = Inp(x|Ci)p(Cr). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if a; > a; for all j # k, then
p(Cx|x) =~ 1, and p(C;|x) ~ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs

Let us assume that the class-conditional densities are Gaussian and then explore
the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Cy is given
by

p(x|Cr) = (ﬁrﬁlz—]‘/—z exp {—%(x — ) TE (% — ,u.k)} . (4.64)
Consider first the case of two classes. From (4.57) and (4.58), we have
p(C1]x) = o(WwTx + wp) (4.65)
where we have defined
w o= 2N u —p) (4.66)
wy = —l,u]_rE Yoo, + lugz_l;@ +In P(Cy) (4.67)

2 2 p(Ca)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting



4.2, Probabilistic Generative Models 199

0.8 4
0.6 4
0.4

0.2 4

L |

Figure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(C:|x), which is given by a logistic sigmoid of a linear
unction of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(C.1|x) and a
sroportion of blue ink given by p(Ca|x) = 1 — p(Ci]x).

decision boundaries correspond to surfaces along which the posterior probabilities
p(Cr|x) are constant and so will be given by linear functions of x, and therefore
the decision boundaries are linear in input space. The prior probabilities p(Cy) enter
only through the bias parameter 1wy so that changes in the priors have the effect of
making parallel shifts of the decision boundary and more generally of the parallel
contours of constant posterior probability.

For the general case of K classes we have, from (4.62) and (4.63),

ar(X) = WEX + wio (4.68)

where we have defined
wr = X 'p, (4.69)
Wro = *%ulb_lﬂk + Inp(Cy). (4.70)

We see that the ay(x) are again linear functions of x as a consequence of the cancel-
lation of the quadratic terms due to the shared covariances. The resulting decision
boundaries, corresponding to the minimum misclassification rate, will occur when
two of the posterior probabilities (the two largest) are equal, and so will be defined
by linear functions of x, and so again we have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each class-
conditional density p(x|Cx) to have its own covariance matrix Xy, then the earlier
cancellations will no longer occur, and we will obtain quadratic functions of x, giv-
ing rise to a guadratic discriminant. The linear and quadratic decision boundaries
are illustrated in Figure 4.11.
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The left-hand plot shows the class-conditional densities for three classes each having a Gaussian

distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution

Once we have specified a parametric functional form for the class-conditional
densities p(x|Cy), we can then determine the values of the parameters, together with
the prior class probabilities p(Cy, ), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {x,,. 1, }
wheren =1,...,! N. Here t,, = 1 denotes class C; and t,, = 0 denotes class C,. We
denote the prior class probability p(Cy) = m, so that p(Cs) = 1 — 7. For a data point
x,, from class C;, we have {,, = 1 and hence

p(xn,C1) = p(C)p(x,|C1) = 7N (Xn |21, E).
Similarly for class Cs, we have ¢,, = 0 and hence
p(xn,C2) = p(C2)p(%,|C2) = (1 — )N (%5 |y, B).
Thus the likelihood function is given by

N
r t, 1ty
p(tm, sy, s B) = H [N (%p| g2y, )™ [(1 — 1IN (x| 5, )] 4.71)
n=1
where t = (¢;,...,1x5)". As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to 7. The terms in
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the log likelihood function that depend on 7 are

N
> {tnlnw+ (1 —t,) In(L -7} (4.72)

n=1

Setting the derivative with respect to 7 equal to zero and rearranging, we obtain

1 N, Ni _
LY, ~ "IN N T 473

&
n=1

where N; denotes the total number of data points in class Cy, and N, denotes the total
number of data points in class Co. Thus the maximum likelihood estimate for 7 is
simply the fraction of points in class C; as expected. This result is casily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Cy, is given by the fraction of the training set points
assigned to that class.

Now consider the maximization with respect to g;. Again we can pick out of
the log likelihood function those terms that depend on g4, giving

N
Ztﬂ‘lnj\f(x”,ml,ﬂ} ——Ztn —p) B (%, — ) + const. (4.74)

n=1 n=1

Setting the derivative with respect to g, to zero and rearranging, we obtain

Hy = .Nl Z tnXn (4.75)

n=1

which is simply the mean of all the input vectors x,, assigned to class C;. By a
similar argument, the corresponding result for p, is given by

”
L d
o= > (1 —tw)x (4.76)

=1
L]

which again is the mean of all the input vectors x,, assigned to class Cs.

Finally, consider the maximum likelihood solution for the shared covariance
matrix X. Picking out the terms in the log likelihood function that depend on X, we
have

1 )
— T,ln]Z}——ztn L l()c,,—‘u,l)

|
N

N
1 1 _
~3 Z (1= ta) I [B] = 5D (1= t) (k0 — o) TS (0 = p22)

n=1 =1

n|21 - —Tr{z: 's} (4.77)
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where we have defined

.‘7\'?] f\rg
1 T
81 = EZ(x“—ul)(xr,—m (4.79)
nelC,
S; = & ;xn 1) (X — pao) 7. (4.80)

Using the standard result for the maximum likelihood solution for a Gaussian distri-
bution, we see that ¥ = S, which represents a weighted average of the covariance
matrices associated with each of the two classes separately.

This result is easily extended to the K class problem to obtain the corresponding
maximum likelihood solutions for the parameters in which each class-conditional
density is Gaussian with a shared covariance matrix. Note that the approach of fitting
Gaussian distributions to the classes is not robust to outliers, because the maximum
likelihood estimation of a Gaussian is not robust.

4.2.3 Discrete features

Let us now consider the case of discrete feature values x;. For simplicity, we
begin by looking at binary feature values x; € {0,1} and discuss the extension to
more general discrete features shortly. If there are ) inputs, then a general distribu-
tion would correspond to a table of 2” numbers for each class, containing 2”7 — 1
independent variables (due to the summation constraint). Because this grows expo-
nentially with the number of features, we might seek a more restricted representa-
tion. Here we will make the naive Bayes assumption in which the feature values are
treated as independent, conditioned on the class Cj.. Thus we have class-conditional
distributions of the form

p(x|Cx) = H pEd(l = ) ™™ (4.81)

which contain 1) independent parameters for each class. Substituting into (4.63) then
gives

Z{; In pugi + (1 — 2;) In(1 — i)} + Inp(Cy) (4.82)
i=1
which again are linear functions of the input values ;. For the case of K = 2 classes,
we can alternatively consider the logistic sigmoid formulation given by (4.57). Anal-
ogous results are obtained for discrete variables each of which can take M > 2
states.

4.2.4 Exponential family

As we have seen, for both Gaussian distributed and discrete inputs, the posterior
class probabilities are given by generalized linear models with logistic sigmoid (K" =
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2 classes) or softmax (K = 2 classes) activation functions. These are particular cases
of a more general result obtained by assuming that the class-conditional densities
p(x|C).) are members of the exponential family of distributions.

Using the form (2.194) for members of the exponential family, we see that the
distribution of x can be written in the form

p(x|Ak) = h(x)g(Ax) exp { A u(x)} - (4.83)

We now restrict attention to the subclass of such distributions for which u(x) = x.
Then we make use of (2.236) to introduce a scaling parameter s, so that we obtain
the restricted set of exponential family class-conditional densities of the form

1 1 1
p(x| Ak, 8) = —h (;x) a(Ax) exp {—,\;{fx} : (4.84)
S 8§

o

Note that we are allowing each class to have its own parameter vector Aj, but we are
assuming that the classes share the same scale parameter s.

For the two-class problem, we substitute this expression for the class-conditional
densities into (4.58) and we see that the posterior class probability is again given by
a logistic sigmoid acting on a linear function a(x) which is given by

a(x) = (A1 = A)Tx +1Ing(A) —Ing(As) + Inp(Cy) — Inp(Cs).  (4.85)

Similarly, for the K'-class problem, we substitute the class-conditional density ex-
pression into (4.63) to give

ap(x) = Afx + Ing(Ax) + Inp(Cp) (4.86)

and so again is a linear function of x.

Probabilistic Discriminative Models

For the two-class classification problem, we have seen that the posterior probability
of class C, can be written as a logistic sigmoid acting on a linear function of x, for a
wide choice of class-conditional distributions p(x|C;.). Similarly, for the multiclass
case, the posterior probability of class Cy. is given by a softmax transformation of a
linear function of x. For specific choices of the class-conditional densities p(x|Cy, ),
we have used maximum likelihood to determine the parameters of the densities as
well as the class priors p(Cy ) and then used Bayes’ theorem to find the posterior class
probabilities.

However, an alternative approach is to use the functional form of the generalized
linear model explicitly and to determine its parameters directly by using maximum
likelihood. We shall see that there is an efficient algorithm finding such solutions
known as iterative reweighted least squares, or IRLS.

The indirect approach to finding the parameters of a generalized linear model,
by fitting class-conditional densities and class priors separately and then applying
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lllustration of the role of nonlinear basis functions in linear classification models. The left plot

shows the original input space (.1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions ¢ (x) and ¢.(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(¢1.¢2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Cg|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions

So far in this chapter, we have considered classification models that work di-
rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions ¢(x). The resulting decision boundaries will be linear in
the feature space ¢, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space ¢(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the
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basis functions is typically set to a constant, say ¢g(x) = 1, so that the correspond-
ing parameter wy plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation ¢(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Cy). This corresponds to posterior probabilities
p(Cx|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations ¢(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will be
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression

We begin our treatment of generalized linear models by considering the problem
of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C;
can be written as a logistic sigmoid acting on a linear function of the feature vector
¢ so that

p(Ci|@) = y(¢p) = o (W' @) (4.87)

with p(Cz|@) = 1 — p(Cy|¢p). Here o(-) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space ¢, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 20 parameters for the means and M (M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C, ),
this gives a total of M (M +5)/2+ 1 parameters, which grows quadratically with M,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M, there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselt

— =o(l—o). (4.88)
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For a data set {¢,,1,}, where t, € {0,1} and ¢, = ¢(x,), with n =

1,..., N, the likelihood function can be written
N
ptiw) = [Jvir {1 -y} ™" (4.89)
n=1
where t = (t1,...,t5)" and y, = p(Ci|¢h,). As usual, we can define an error

function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

N
E(w) =—Inp(tiw) = =Y {tnIny, + (1 —t,) In(1 - y,)} (4.90)

n=1

where y,, = o(a,) and a,, = w' ¢,,. Taking the gradient of the error function with
respect to w, we obtain

VE(W) = (4o — tn)bn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ v, — t, between the target value and the prediction of the
model, times the basis function vector ¢,,. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-ol-squares
error function for the linear regression model.

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which V E,, is the n'" term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to o = (.5, equivalent to w' ¢ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Cx|x) = 1. Furthermore, there is typically a continuum
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.
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4.3.3 Iterative reweighted least squares

In the case of the linear regression models discussed in Chapter 3, the maxi-
mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function £ (w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

wirew) — wlold) _ -1y B(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

N
VEw) = Y (W', —tn)¢,=2Tdw—-3"t (493
n=]1
N
H=VVE(w) = > ¢,¢,=2"2 (4.94)
n=1

th

where ® is the N x M design matrix, whose n'" row is given by ¢! The Newton-

Raphson update then takes the form
w(ncw) _ w(nld] o (@T@)ﬁl {@T@w(nld) . @Tt}
= (®T®)"'a"t (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

N
VEW) = Y (Un—tn)d, =2 (y—1) (4.96)
n=1
N
H = VVE(w)= Zyn(l — )0, =dTRE  (4.97)

n=1
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where we have made use of (4.88). Also, we have introduced the N x N diagonal
matrix R with elements
Ry = Un(l - y-n)- (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < y,, << 1, which follows from the form of the logistic sigmoid
function, we see that u™Hu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. It follows that the error function is a concave function of w
and hence has a unique minimum.

The Newton-Raphson update formula for the logistic regression model then be-
comes

[

W(new) s W(GM) — (‘I‘TR.‘I’)_1 q’T(V - t)
~ (@"R®) ' {o"ROWED — BT(y 1))
_ ("R®) '®"Rz (4.99)

where z is an N-dimensional vector with elements
z=3wY _R(y—t). (4.100)

‘We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter vector w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R.. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of ¢ in the logistic regression model are given by

Et] = o(x)=y (4.101)
varlt] = E[*] - E[t]* = o(x) — o(x)* = y(1 — y) (4.102)

where we have used the property t* = ¢ fort € {0, 1}. In fact, we can interpret IRLS
as the solution to a linearized problem in the space of the variable a = w'¢. The
quantity z,, which corresponds to the n'" element of 2, can then be given a simple
interpretation as an effective target value in this space obtained by making a local
linear approximation to the logistic sigmoid function around the current operating
point w (!9

da,
(LH(W) =~ (W(Old)) 4 =—m (tn — Yn
" dy'n wleld) )
= qbgwfnlrl) o (yn - tn} = 2k (4103)

yn(] - yn)
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4.3.4 Multiclass logistic regression

In our discussion of generative models for multiclass classification, we have
seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

exp(ax
p(Ckl@) = yk(9) = Z‘u# (4.104)
; exp(a;)
where the ‘activations’ ay are given by
ar = wp . (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilitics
using Bayes” theorem, thereby implicitly determining the parameters {w. }. Here we
consider the use of maximum likelihood to determine the parameters {wy } of this
model directly. To do this, we will require the derivatives of y;. with respect to all of
the activations a;. These are given by

% =Uk(lx; —U5) (4.106)
da;
where I;.; are the elements of the identity matrix.

Next we write down the likelihood function. This is most easily done using
the 1-of-K coding scheme in which the target vector t,, for a feature vector ¢,
belonging to class Cy, is a binary vector with all elements zero except for element £,
which equals one. The likelihood function is then given by

N K

p(T|wy, ..., W) H Hp (Ci|o,,) t"* = H H y,’“‘ (4.107)

n=1 k=1 n=1 k=

where ynr = yr(¢,, ), and T is an N x K matrix of target variables with elements
tnk- Taking the negative logarithm then gives

E(wy,..., wig)=—Inp(T|wy,..., wg) Z Z Lok 10040 (4.108)

n=1 k=1

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors w;. Making use of the result (4.106) for the derivatives of the softmax
function, we obtain

N
Ve, E(Wi,...,Wi) =Y (Unj — tnj) &, (4.109)
n=1
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where we have made use of Z i tnk = 1. Once again, we see the same form arising
for the gradient as was found for the sum-of-squares error function with the linear
model and the cross-entropy error for the logistic regression model, namely the prod-
uct of the error (yy; — t,;) times the basis function ¢,,. Again, we could use this
to formulate a sequential algorithm in which patterns are presented one at a time, in
which each of the weight vectors is updated using (3.22).

We have seen that the derivative of the log likelihood function for a linear regres-
sion model with respect to the parameter vector w for a data point n took the form
of the ‘error’ y,, — t,, times the feature vector ¢b,,. Similarly. for the combination
of logistic sigmoid activation function and cross-entropy error function (4.90), and
for the softmax activation function with the multiclass cross-entropy error function
(4.108), we again obtain this same simple form. This is an example of a more general
result, as we shall see in Section 4.3.6.

To find a batch algorithm, we again appeal to the Newton-Raphson update to
obtain the corresponding IRLS algorithm for the multiclass problem. This requires
evaluation of the Hessian matrix that comprises blocks of size M x M in which
block 7, k is given by

J‘\’
Voo, Voo, EW1, o W) = =D ynk (kg — Yng) b br- (4.110)

n=1

As with the two-class problem, the Hessian matrix for the multiclass logistic regres-
sion model is positive definite and so the error function again has a unique minimum.
Practical details of IRLS for the multiclass case can be found in Bishop and Nabney
(2008).

4.3.5 Probit regression

We have seen that, for a broad range of class-conditional distributions, described
by the exponential family, the resulting posterior class probabilities are given by a
logistic (or softmax) transformation acting on a linear function of the feature vari-
ables. However, not all choices of class-conditional density give rise to such a simple
form for the posterior probabilities (for instance, if the class-conditional densities are
modelled using Gaussian mixtures). This suggests that it might be worth exploring
other types of discriminative probabilistic model. For the purposes of this chapter,
however, we shall return to the two-class case, and again remain within the frame-
work of generalized linear models so that

p(t = 1]a) = f(a) (4.111)

where o = wT ¢, and f(-) is the activation function.

One way to motivate an alternative choice for the link function is to consider a
noisy threshold model, as follows. For each input ¢, , we evaluate a,, = qub” and
then we set the target value according to

{t,, =1 ifa, =0

4.112
t, =0 otherwise. ( )
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“igure 4.13 Schematic example of a probability density p(0)
shown by the blue curve, given in this example by a mixture
of two Gaussians, along with its cumulative distribution function
f(a), shown by the red curve. Note that the value of the blue
surve at any point, such as that indicated by the vertical green
ine, corresponds to the slope of the red curve at the same point.
Conversely, the value of the red curve at this point corresponds
o the area under the blue curve indicated by the shaded green
egion. In the stochastic threshold model, the class label takes
he value ¢ = 1 if the value of « = w™ ¢ exceeds a threshold, oth-

0.8t

0.6

04r

arwise it takes the value ¢ = 0. This is equivalent to an activation (2

]

unction given by the cumulative distribution function f(a).

0

If the value of # is drawn from a probability density p(#), then the corresponding
activation function will be given by the cumulative distribution function

fla) = / p(0)do (4.113)

—00

as illustrated in Figure 4.13.

As a specific example, suppose that the density p(#) is given by a zero mean,
unit variance Gaussian. The corresponding cumulative distribution function is given
by

D(a) = / N(#8|0,1)do (4.114)
which is known as the probit function. It has a sigmoidal shape and is compared
with the logistic sigmoid function in Figure 4.9. Note that the use of a more gen-
eral Gaussian distribution does not change the model because this is equivalent to

a re-scaling of the linear coefficients w. Many numerical packages provide for the
evaluation of a closely related function defined by

erf(a) = %f exp(—6%/2)df (4.115)
0

and known as the erf function or error function (not to be confused with the error

Exercise 4.21 function of a machine learning model). it is related to the probit function by
®(a) 1 1+ L f(a) (4.116)
= == ——=eri{a . .
2 V2

The generalized linear model based on a probit activation function is known as probit
regression.

We can determine the parameters of this model using maximum likelihood, by a
straightforward extension of the ideas discussed earlier. In practice, the results found
using probit regression tend to be similar to those of logistic regression. We shall,
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however, find another use for the probit model when we discuss Bayesian treatments
of logistic regression in Section 4.5.

One issue that can occur in practical applications is that of outliers, which can
arise for instance through errors in measuring the input vector x or through misla-
belling of the target value f. Because such points can lie a long way to the wrong side
of the ideal decision boundary, they can seriously distort the classifier. Note that the
logistic and probit regression models behave differently in this respect because the
tails of the logistic sigmoid decay asymptotically like exp(—x) for x — oo, whereas
for the probit activation function they decay like exp(—x?), and so the probit model
can be significantly more sensitive to outliers.

However, both the logistic and the probit models assume the data is correctly
labelled. The effect of mislabelling is easily incorporated into a probabilistic model
by introducing a probability e that the target value # has been flipped to the wrong
value (Opper and Winther, 2000a), leading to a target value distribution for data point
x of the form

p(tlx) = (1—¢€)o(x)+€e(l —a(x))
= €+ (1 —2¢)o(x) (4.117)

where o(x) is the activation function with input vector x. Here ¢ may be set in
advance, or it may be treated as a hyperparameter whose value is inferred from the
data.

4.3.6 Canonical link functions

For the linear regression model with a Gaussian noise distribution, the error
function, corresponding to the negative log likelihood, is given by (3.12). If we take
the derivative with respect to the parameter vector w of the contribution to the error
function from a data point n, this takes the form of the ‘error’ ¥, — t,, times the
feature vector ¢,,, where y, = w' ¢, . Similarly, for the combination of the logistic
sigmoid activation function and the cross-entropy error function (4.90), and for the
softmax activation function with the multiclass cross-entropy error function (4.108),
we again obtain this same simple form. We now show that this is a general result
of assuming a conditional distribution for the target variable from the exponential
family, along with a corresponding choice for the activation function known as the
canonical link function.

We again make use of the restricted form (4.84) of exponential family distribu-
tions. Note that here we are applying the assumption of exponential family distribu-
tion to the target variable ¢, in contrast to Section 4.2.4 where we applied it to the
input vector x. We therefore consider conditional distributions of the target variable
of the form

p(t|n, s) = éh (%) g(n)exp {-Z—t} . (4.118)

Using the same line of argument as led to the derivation of the result (2.226), we see
that the conditional mean of #, which we denote by y, is given by

d
y =Elt|n] = _SIT'] Ing(n). (4.119)
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Thus y and 1 must related, and we denote this relation through 1 = (y).
Following Nelder and Wedderburn (1972), we define a generalized linear model
to be one for which y is a nonlinear function of a linear combination of the input (or
feature) variables so that
y= f(wlo) (4.120)

where f(-) is known as the activation function in the machine learning literature, and
f71(+) is known as the link function in statistics.

Now consider the log likelihood function for this model, which, as a function of
7, is given by

‘ Il'fl‘l ¢
Inp(t|n, s) E Inp(t,|n.s) = E {lng(n,,) ’—} + const (4.121)
S5

fi=1 n=1

where we are assuming that all observations share a common scale parameter (which
corresponds to the noise variance for a Gaussian distribution for instance) and so s
is independent of n. The derivative of the log likelihood with respect to the model
parameters w is then given by

(].'f,f-“ dyy,

N
d Iy
np(tfn,s) = ng(n,) +— ——Vay
Vi Inp(t]r), 5) Zl{,] ng(m) + },/ T Van
n=
N 1
> —{tn = yn} &' () ' (an) b, (4.122)

n=l1

where a,, = quﬁn, and we have used y,, = f(a,,) together with the result (4.119)
for E[t|n]. We now see that there is a considerable simplification if we choose a
particular form for the link function f~*(y) given by

' (y) = ¢(y) (4.123)

which gives f((y)) = y and hence f'(1)v’(y) = 1. Also, because a = f~'(y),
we have a = 1 and hence [’(a)y'(y) = 1. In this case, the gradient of the error
function reduces to

VinE(w Z{yn —ta}, (4.124)

n=1

For the Gaussian s = 37, whereas for the logistic model s =

The Laplace Approximation

In Section 4.5 we shall discuss the Bayesian treatment of logistic regression. As
we shall see, this is more complex than the Bayesian treatment of linear regression
models, discussed in Sections 3.3 and 3.5. In particular, we cannot integrate exactly
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over the parameter vector w since the posterior distribution is no longer Gaussian.
It is therefore necessary to introduce some form of approximation. Later in the
book we shall consider a range of techniques based on analytical approximations
and numerical sampling.

Here we introduce a simple, but widely used, framework called the Laplace ap-
proximation, that aims to find a Gaussian approximation to a probability density
defined over a set of continuous variables. Consider first the case of a single contin-
uous variable z, and suppose the distribution p(z) is defined by

‘ 1
p(z) = Ef(z) (4.125)

where Z = [ f(z)dz is the normalization coefficient. We shall suppose that the
value of Z is unknown. In the Laplace method the goal is to find a Gaussian approx-
imation ¢(z) which is centred on a mode of the distribution p(z). The first step is to
find a mode of p(z), in other words a point z; such that p’(zp) = 0, or equivalently

df (z)

=0. (4.126)

A Gaussian distribution has the property that its logarithm is a quadratic function
of the variables. We therefore consider a Taylor expansion of In f(z) centred on the

mode z; so that

In f(z) ~In f(z) — %A(z -~ 20)2 4.127)

where
d2
A=—.—Inf(z)

dz?

(4.128)

z=zy

Note that the first-order term in the Taylor expansion does not appear since z is a
local maximum of the distribution. Taking the exponential we obtain

f(2) :f(zn)exp{g(zﬁzu}z}. (4.129)

We can then obtain a normalized distribution ¢(z) by making use of the standard
result for the normalization of a Gaussian, so that

AN A y
q(z) = (ﬂ) exp {2(2 - z”)z} : (4.130)

The Laplace approximation is illustrated in Figure 4.14. Note that the Gaussian
approximation will only be well defined if its precision A > 0, in other words the
stationary point zp must be a local maximum, so that the second derivative of f(z)
at the point z; is negative,



4.4. The Laplace Approximation 215
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“igure 4.14 lllustration of the Laplace approximation applied to the distribution p(z) x exp(—2”/2)a(20z + 4)
vhere o(z) is the logistic sigmoid function defined by o(z) = (1 + ¢~ *)~*. The left plot shows the normalized
listribution p(z) in yellow, together with the Laplace approximation centred on the mode =z, of p(z) in red. The
ight plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(z)/Z
defined over an M-dimensional space z. At a stationary point z, the gradient V [ (z)
will vanish. Expanding around this stationary point we have

In f(z) ~ In f(zo) — %(z —20)TA(z — 2zg) (4.131)

where the M x M Hessian matrix A is defined by

A =—VVinf(z) (4.132)

Z=2Z

and V is the gradient operator. Taking the exponential of both sides we obtain
1 -
f(Z):f(zia)exp{—§(z—20)]A(z—ZU}}- (4.133)

The distribution g(z) is proportional to f(z) and the appropriate normalization coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized
multivariate Gaussian, giving

()= AL L o —20)TA@ —20) | =N(elzn AY)  (4134)
9z _(Qﬂ-)M/?le) —§(z Zy z—1z) ¢ = N(2z|zg, J

where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point z; must be a local maximum, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop
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and Nabney, 2008). Many of the distributions encountered in practice will be mul-
timodal and so there will be different Laplace approximations according to which
mode is being considered. Note that the normalization constant Z of the true distri-
bution does not need to be known in order to apply the Laplace method. As a result
of the central limit theorem, the posterior distribution for a model is expected to
become increasingly better approximated by a Gaussian as the number of observed
data points is increased, and so we would expect the Laplace approximation to be
most usetul in situations where the number of data points is relatively large.

One major weakness of the Laplace approximation is that, since it is based on a
Gaussian distribution, it is only directly applicable to real variables. In other cases
it may be possible to apply the Laplace approximation to a transformation of the
variable. For instance if 0 < 7 < oo then we can consider a Laplace approximation
of In7. The most serious limitation of the Laplace framework, however, is that
it is based purely on the aspects of the true distribution at a specific value of the
variable, and so can fail to capture important global properties. In Chapter 10 we
shall consider alternative approaches which adopt a more global perspective.

4.4.1 Model comparison and BIC

As well as approximating the distribution p(z) we can also obtain an approxi-
mation to the normalization constant Z. Using the approximation (4.133) we have

7 = ff(z)dz
o~ /(50)/0)@{ = zzU)TA(z—zo)} dz

AI/J
= S o
where we have noted that the integrand is Gaussian and made use of the standard
result (2.43) for a normalized Gaussian distribution. We can use the result (4.135) to
obtain an approximation to the model evidence which, as discussed in Section 3.4,
plays a central role in Bayesian model comparison.

Consider a data set D and a set of models {M;} having parameters {6;}. For
cach model we define a likelihood function p(D|@,;, M,). If we introduce a prior
p(6;|M;) over the parameters, then we are interested in computing the model evi-
dence p(D|M;) for the various models. From now on we omit the conditioning on
M; to keep the notation uncluttered. From Bayes™ theorem the model evidence is
given by

LO

(4.135)

p(D) = /p(me)p(e) 6. (4.136)

Identifying f(€) = p(D|@)p(0) and Z = p(D), and applying the result (4.135), we
obtain

M o
Inp(D) = Inp(P|Omar) + Inp(Oriar) + 5 In(2m) — S In A (4.137)

Occam factor
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where Oy;ap is the value of @ at the mode of the posterior distribution, and A is the
Hessian matrix of second derivatives of the negative log posterior

A = —VVInp(D|Ouar)p(@nar) = =VV Inp(@uap|D). (4.138)

The first term on the right hand side of (4.137) represents the log likelihood evalu-
ated using the optimized parameters, while the remaining three terms comprise the
‘Occam factor” which penalizes model complexity.

If we assume that the Gaussian prior distribution over parameters is broad, and
that the Hessian has full rank, then we can approximate (4.137) very roughly using

1
Inp(D) 2 Inp(D|Onap) — 51\’] In N (4.139)

where N is the number of data points, M is the number of parameters in 8 and
we have omitted additive constants. This is known as the Bavesian Information
Criterion (BIC) or the Schwarz criterion (Schwarz, 1978). Note that, compared to
AIC given by (1.73), this penalizes model complexity more heavily.

Complexity measures such as AIC and BIC have the virtue of being easy to
evaluate, but can also give misleading results. In particular, the assumption that the
Hessian matrix has full rank is often not valid since many of the parameters are not
‘well-determined’. We can use the result (4.137) to obtain a more accurate estimate
of the model evidence starting from the Laplace approximation, as we illustrate in
the context of neural networks in Section 5.7.

Bayesian Logistic Regression

We now turn to a Bayesian treatment of logistic regression. Exact Bayesian infer-
ence for logistic regression is intractable. In particular, evaluation of the posterior
distribution would require normalization of the product of a prior distribution and a
likelihood function that itself comprises a product of logistic sigmoid functions, one
for every data point. Evaluation of the predictive distribution is similarly intractable.
Here we consider the application of the Laplace approximation to the problem of
Bayesian logistic regression (Spiegelhalter and Lauritzen, 1990; MacKay, 1992b).

4.5.1 Laplace approximation

Recall from Section 4.4 that the Laplace approximation is obtained by finding
the mode of the posterior distribution and then fitting a Gaussian centred at that
mode. This requires evaluation of the second derivatives of the log posterior, which
is equivalent to finding the Hessian matrix.

Because we seek a Gaussian representation for the posterior distribution, it is
natural to begin with a Gaussian prior, which we write in the general form

p(w) = N(w|mg, So) (4.140)
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where my, and S, are fixed hyperparameters. The posterior distribution over w is
given by
p(w(t) o p(w)p(t|jw) (4.141)

where t = (¢,,...,tx)". Taking the log of both sides, and substituting for the prior
distribution using (4.140), and for the likelihood function using (4.89), we obtain

1 i3 _
Inp(wlt) = f§(w —myg) TSy (w — my)

;\’f
% Z {tnIny, + (1 —t,)In(1 — y,)} + const (4.142)
n=1

where 4, = a(wT¢, ). To obtain a Gaussian approximation to the posterior dis-
tribution, we first maximize the posterior distribution to give the MAP (maximum
posterior) solution wyap, which defines the mean of the Gaussian. The covariance
is then given by the inverse of the matrix of second derivatives of the negative log
likelihood, which takes the form

N

Sy =—VVInp(wlt) =S5" + > yn(1 — yn)d, b0 (4.143)

n=1
The Gaussian approximation to the posterior distribution therefore takes the form
g(w) = N(W\WMAP» Sw)- (4.144)

Having obtained a Gaussian approximation to the posterior distribution, there
remains the task of marginalizing with respect to this distribution in order to make
predictions.

4.5.2 Predictive distribution

The predictive distribution for class C;, given a new feature vector ¢(x), is
obtained by marginalizing with respect to the posterior distribution p(w|t), which is
itself approximated by a Gaussian distribution ¢(w) so that

pCilot) = [plCowpwtdw= [awigw)dw  @145)
with the corresponding probability for class C, given by p(Cz|¢,t) = 1 — p(Ci |, 1).

To evaluate the predictive distribution, we first note that the function o(wT¢) de-
pends on w only through its projection onto ¢. Denoting a = w' ¢, we have

o(wlig) = /5(9. —w'g)o(a)da (4.146)

where d(-) is the Dirac delta function. From this we obtain

/ o(wp)g(w)dw = f o(a)p(a)da (4.147)
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where

pla) = /a‘(a —wlg)g(w)dw. (4.148)

We can evaluate p(a) by noting that the delta function imposes a linear constraint
on w and so forms a marginal distribution from the joint distribution g(w) by inte-
grating out all directions orthogonal to ¢. Because ¢(w) is Gaussian, we know from
Section 2.3.2 that the marginal distribution will also be Gaussian. We can evaluate
the mean and covariance of this distribution by taking moments, and interchanging
the order of integration over a and w, so that

po = Ela] = fp(a)a da = /q(w)qubdw = WiAp® (4.149)

where we have used the result (4.144) for the variational posterior distribution ¢(w ).
Similarly

o2 = varfa / ) {a® — E[a]*} da
. /‘q(w>{(w%)2—(mﬁ¢>2} dw=¢TSne. (@150

Note that the distribution of a takes the same form as the predictive distribution
(3.58) for the linear regression model, with the noise variance set to zero. Thus our
variational approximation to the predictive distribution becomes

p(Cy|t) =fa(u)p(m)du = /a(a (a|pa, o) da. (4.151)

This result can also be derived directly by making use of the results for the marginal
of a Gaussian distribution given in Section 2.3.2.

The integral over a represents the convolution of a Gaussian with a logistic sig-
moid, and cannot be evaluated analytically. We can, however, obtain a good approx-
imation (Spiegelhalter and Lauritzen, 1990; MacKay, 1992b; Barber and Bishop,
1998a) by making use of the close similarity between the logistic sigmoid function
a(a) defined by (4.59) and the probit function ¢(a) defined by (4.114). In order to
obtain the best approximation to the logistic function we need to re-scale the hori-
zontal axis, so that we approximate (a) by ®(\a). We can find a suitable value of
A by requiring that the two functions have the same slope at the origin, which gives
A? = 7 /8. The similarity of the logistic sigmoid and the probit function, for this
choice of A, is illustrated in Figure 4.9.

The advantage of using a probit function is that its convolution with a Gaussian
can be expressed analytically in terms of another probit function. Specifically we
can show that

f@(Aa)N(ﬂljit.ﬂ2}(](I = (m) . (4152)
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We now apply the approximation #(a) ~ ®(Aa) to the probit functions appearing
on both sides of this equation, leading to the following approximation for the convo-
lution of a logistic sigmoid with a Gaussian

/a(a}N(u.I;f.. o%)da ~ o (k(c”)p) (4.153)

where we have defined
r(o?) = (1 + wa?/8)71/2, (4.154)

Applying this result to (4.151) we obtain the approximate predictive distribution
in the form

' p(Ci|@,t) = o (k(0})pta) (4.155)

where /1, and o are defined by (4.149) and (4.150), respectively, and k(0?) is de-
fined by (4.154).

Note that the decision boundary corresponding to p(C;|¢.t) = 0.5 is given by
fto = 0, which is the same as the decision boundary obtained by using the MAP
value for w. Thus if the decision criterion is based on minimizing misclassifica-
tion rate, with equal prior probabilities, then the marginalization over w has no ef-
fect. However, for more complex decision criteria it will play an important role.
Marginalization of the logistic sigmoid model under a Gaussian approximation (o
the posterior distribution will be illustrated in the context of variational inference in
Figure 10.13.

Exercises
4.1

4.2

(x+) Given a set of data points {x,, }, we can define the convex hull to be the set of
all points x given by

X = Z ApXp, (4.156)

where «v,, = 0 and Z" o, = 1. Consider a second set of points {y,, } together with
their corresponding convex hull. By definition, the two sets of points will be linearly
separable if there exists a vector w and a scalar wy such that W' x,, + wg > 0 for all
X, and Wy, +wg < 0 for all y,,. Show that if their convex hulls intersect, the twe
sets of points cannot be linearly separable, and conversely that if they are linearly
separable, their convex hulls do not intersect.

(++) [l Consider the minimization of a sum-of-squares error function (4.15)
and suppose that all of the target vectors in the training set satisfy a linear constrain{

alt, +b5="0 (4.157)

where t,, corresponds to the n'™ row of the matrix T in (4.15). Show that as ¢
consequence of this constraint, the elements of the model prediction y(x) given by
the least-squares solution (4.17) also satisfy this constraint, so that

aly(x)+b=0. (4.158
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4.10

Exercises 221

To do so, assume that one of the basis functions ¢g(x) = 1 so that the corresponding
parameter w plays the role of a bias.

(x%) Extend the result of Exercise 4.2 to show that if multiple linear constraints
are satisfied simultaneously by the target vectors, then the same constraints will also
be satisfied by the least-squares prediction of a linear model.

() I Show that maximization of the class separation criterion given by (4.23)
with respect to w, using a Lagrange multiplier to enforce the constraint w™w = 1,
leads to the result that w o (m, — m; ).

(*x) By making use of (4.20), (4.23), and (4.24), show that the Fisher criterion (4.25)
can be written in the form (4.26).

(*) Using the definitions of the between-class and within-class covariance matrices
given by (4.27) and (4.28), respectively, together with (4.34) and (4.36) and the
choice of target values described in Section 4.1.5, show that the expression (4.33)
that minimizes the sum-of-squares error function can be written in the form (4.37).

(x) R Show that the logistic sigmoid function (4.59) satisfies the property
o(—a) = 1 — o(a) and that its inverse is given by o~ '(y) = In{y/(1 — y)}.

(x) Using (4.57) and (4.58), derive the result (4.65) for the posterior class probability
in the two-class generative model with Gaussian densities, and verify the results
(4.66) and (4.67) for the parameters w and wy.

() EE Consider a generative classification model for K classes defined by
prior class probabilities p(Cy) = 7. and general class-conditional densities p(¢|Cy.)
where ¢ is the input feature vector. Suppose we are given a training data set {¢,,. t,, }
wheren = 1,..., N, and t,, is a binary target vector of length K that uses the 1-of-
K coding scheme, so that it has components t,,; = I if pattern 7 is from class Cy.
Assuming that the data points are drawn independently from this model, show that
the maximum-likelihood solution for the prior probabilities is given by

T — N (4.159)

where Ny is the number of data points assigned to class Cj.

(x%) Consider the classification model of Exercise 4.9 and now suppose that the
class-conditional densities are given by Gaussian distributions with a shared covari-
ance matrix, so that

p(@[Ck) = N (|, ). (4.160)
Show that the maximum likelihood solution for the mean of the Gaussian distribution
for class Cy, is given by

N
1
= —— tnk 4.161
’—”L Nk Z hqbn ( )

n=1
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4.1

4.12

413

4.14

4.15

4.16

which represents the mean of those feature vectors assigned to class Cj. Similarly,
show that the maximum likelihood solution for the shared covariance matrix is given
by

KN
NN
3= Z o S, (4.162)
k=1
where
1 N
Sk = 3 D tar(bn — i) (91 — )T (4.163)
" n=1

Thus X is given by a weighted average of the covariances of the data associated with
each class, in which:the weighting coefficients are given by the prior probabilities of
the classes.

(**) Consider a classification problem with K classes for which the feature vector
¢ has M components each of which can take L discrete states. Let the values of the
components be represented by a 1-of- L binary coding scheme. Further suppose that,
conditioned on the class Cy, the M components of ¢ are independent, so that the
class-conditional density factorizes with respect to the feature vector components.
Show that the quantities a, given by (4.63), which appear in the argument to the
softmax function describing the posterior class probabilities, are linear functions of
the components of ¢. Note that this represents an example of the naive Bayes model
which is discussed in Section 8.2.2.

() EXIE Verify the relation (4.88) for the derivative of the logistic sigmoid func-
tion defined by (4.59).

(%) By making use of the result (4.88) for the derivative of the logistic sig-
moid, show that the derivative of the error function (4.90) for the logistic regression
model is given by (4.91).

(») Show that for a linearly separable data set, the maximum likelihood solution
for the logistic regression model is obtained by finding a vector w whose decision
boundary wT¢(x) = 0 separates the classes and then taking the magnitude of w to
infinity.

(x%) Show that the Hessian matrix H for the logistic regression model, given by
(4.97), is positive definite. Here R is a diagonal matrix with elements y,,(1 — yy,),
and y,, is the output of the logistic regression model for input vector x,,. Hence show
that the error function is a concave function of w and that it has a unique minimum.

(x) Consider a binary classification problem in which each observation x,, is known
to belong to one of two classes, corresponding to £ = 0 and ¢ = 1, and suppose that
the procedure for collecting training data is imperfect, so that training points are
sometimes mislabelled. For every data point x,,, instead of having a value { for the
class label, we have instead a value 7, representing the probability that ¢, = 1.
Given a probabilistic model p(t = 1|¢), write down the log likelihood function
appropriate to such a data set.
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4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25
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(%) Show that the derivatives of the softmax activation function (4.104),
where the ay, are defined by (4.105), are given by (4.106).

(%) Using the result (4.91) for the derivatives of the softmax activation function,
show that the gradients of the cross-entropy error (4.108) are given by (4.109).

() Write down expressions for the gradient of the log likelihood, as well
as the corresponding Hessian matrix, for the probit regression model defined in Sec-
tion 4.3.5. These are the quantities that would be required to train such a model using
IRLS.

(**) Show that the Hessian matrix for the multiclass logistic regression problem,
defined by (4.110), is positive semidefinite. Note that the full Hessian matrix for
this problem is of size M K x MK, where M is the number of parameters and K
is the number of classes. To prove the positive semidefinite property, consider the
product uT Hu where u is an arbitrary vector of length M K, and then apply Jensen’s
inequality.

(%) Show that the probit function (4.114) and the erf function (4.115) are related by
(4.116).

(*) Using the result (4.135), derive the expression (4.137) for the log model evi-
dence under the Laplace approximation.

(%%) In this exercise, we derive the BIC result (4.139) starting from the
Laplace approximation to the model evidence given by (4.137). Show that if the
prior over parameters is Gaussian of the form p(@) = N (8|m, V), the log model
evidence under the Laplace approximation takes the form

1 1
lIlp(D) = lll[!(DlBM,\p) - E(BMAP - m)TVU_I(HMAP - m) - § In lHl + const

where H is the matrix of second derivatives of the log likelihood In p(D|@) evaluated
at By ap. Now assume that the prior is broad so that Vi ' is small and the second
term on the right-hand side above can be neglected. Furthermore, consider the case
of independent, identically distributed data so that H is the sum of terms one for each
data point. Show that the log model evidence can then be written approximately in
the form of the BIC expression (4.139).

(%) Use the results from Section 2.3.2 to derive the result (4.151) for the marginal-
ization of the logistic regression model with respect to a Gaussian posterior distribu-
tion over the parameters w.

(**) Suppose we wish to approximate the logistic sigmoid o(a) defined by (4.59)
by a scaled probit function ®(Aa), where ®(a) is defined by (4.114). Show that if
A is chosen so that the derivatives of the two functions are equal at a = (), then
N =x/8.
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4.26 (x+) In this exercise, we prove the relation (4.152) for the convolution of a probit
function with a Gaussian distribution. To do this, show that the derivative of the left-
hand side with respect to y is equal to the derivative of the right-hand side, and then
integrate both sides with respect to p and then show that the constant of integration
vanishes. Note that before differentiating the left-hand side, it is convenient first
to introduce a change of variable given by @ = p + oz so that the integral over a
is replaced by an integral over z. When we differentiate the left-hand side of the
relation (4.152), we will then obtain a Gaussian integral over z that can be evaluated
analytically.



