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Chapter 5 

Sec/ioll 2.5.1 

In Chapters 3 and 4, we considered linear parametric models for regression and 
classification in which the form of the mapping y(x, w) from input x to output Y 
is governed by a vector w of adaptive parameters. During the learning phase. a 
set of training data is used either to obtain a point estimate of the parameter vector 
or to determine a posterior distribution over this vector. The training data is then 
discarded, and predictions for new inputs are based purely on the learned parameter 
vector w. This approach is also used in nonlinear parametric models such as neural 
networks. 

However, there is a class of pattern recognition techniques, in which the training 
data points, or a subset of them, are kept and used also during the prediction phase. 
For instance, the Parzen probability density model comprised a linear combination 
of 'kernel' functions each one centred on one of the training data points. Similarly, 
in Section 2.5.2 we introduced a simple technique for classification called nearest 
neighbours. which involved assigning to each new lest vector the same label as the 
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Chapter 7 

Sectioll 12.3 

Seclion 0.3 

closest example from the training set. These are examples of mell/{)ly ·based methods 
that involve storing the entire training set in order to make predictions for future data 
points. They typically require a metric to be defined that measures the similarity of 
any two vectors in input space. and are generally fast to 'train' but slow at making 
predictions for test data points. 

Many linear parametric models can be re-cast into an equivalent 'dual represen­
tation' in which the predictions are also based on linear combinations of a kernel 
jUlletion evaluated at the training data points. As we shall see, for models which are 
based on a fixed nonlinear jeature space mapping <p(x ), the kernel function is given 
by the relation 

k(x ,x') = <p(X)T<p (X' ). (6.1 ) 

From this definition: we see that the kernel is a symmetric function of its arguments 
so that k(x , x ') = k( X' , x). The kernel concept was introduced into the field of pat­
tern recognition by Aizernlan et al. (1964) in the context of the method of potential 
functions, so-called because of an analogy with electrostatics. Although neglected 
for many years, it was re-introduced into machine learning in the context of largc­
margin classifiers by Boser et al. (1992) giving ri se to the technique of support 
vector machines. Since then, there has been considerable interest in this topic. both 
in ternlS of theory and applications. One of the most significant developments has 
been the extension of kernels to handle symbolic objects, thereby greatly expanding 
the range of problems that can be addressed. 

The simplest example of a kernel function is obtained by considering the identity 
mapping for the feature space in (6. 1) so that <p(x ) = x, in which case k (x. x' ) = 
X T x'. We shall refer to this as the linear kernel. 

The concept of a kernel formulated as an inner product in a feature space allows 
us to build interesting extensions of many well-known algorithms by making use of 
the kenlel trick, also known as kernel substitution. The general idea is thaL, if we have 
an algorithm formulated in such a way that the input vector x enters only in the form 
of scalar products, then we can replace that scalar product with some other choice of 
kernel. For instance, the technique of kernel substitution can be applied to principal 
component analysis in order to develop a nonlinear variant of PCA (Scholkopf et al. , 
1998). Other examples of kernel substitution include nearest-neighbour classifiers 
and the kernel Fisher di scriminant (Mika et al., 1999; Roth and Steinhage, 2000; 
Baudat and Anouar, 2000). 

There are numerous forms of kernel functions in common use, and we shall en­
counter several examples in this chapter. Many have the property of being a function 
only of the difference between the arguments, so that k(x , x ' ) = k( x - x' ), which 
are known as statiollary kernels because they are invariant to translations in input 
space. A further speciali zati on involves homogeneous kernels, also known as ra­
dial basi.,·jullctiolls, which depend only on the magnitude of the distance (typicall y 
Euclidean) between the arguments so that k(x , x' ) = k(llx - x' II) . 

For recent textbooks on kernel methods, see Scholkopf and Smola (2002), Her­
brich (2002), and Shawe-Taylor and Cristianini (2004). 
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t slow at making Many linear model s for regression and classification can be reformulated in terms of 
a dual representation in which the kernel function arises naturally. This concept will 

It 'dual represen­ play an important role when we consider support vector machines in the next chapter. 
tions of a kernel Here we consider a linear regression model whose parameters are determined by 
"odels which are minimizing a regularized sum-of-squares error function given by 
function is given 

1 N A 
(6.1) J (w ) = ;:; L {wTq,(xn) - tn }2 + 2wT w (6.2) 

n=l 
of its arguments 
) the field of pat­ where A ;" O. If we set the gradient of .l (w ) with respect to w equal to zero, we see 
thad of potential that the solution for w takes the form of a linear combination of the vectors q,(xn), 
hough neglected with coefficients that are functions of w , of the form 
context of large­

1 N Nligue of support 
w = -:\ L {wTq,(x n) - tn} q, (x n) = Lanq,(x n) = ipTa (6.3)1 this topic, both 
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reatlyexpanding 

where ip is the design matrix, whose nth row is given by q,(xn)T Here the vector 
a = (al" '" aN )'1', and we have defined ,"ing the identity 

case k(x, x' ) = 
an = -~ {WTq,(Xn) -tn }. (6.4) 
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Schiilkopf et aI., 
hbour classifiers where t = (tl, ... ,tN)"" We now define the Gram matrix K = ipipT, which isan 
:teinhage, 2000; N x N symmetric matrix with elements t 

and we shall en­ K nm = q, (x n)T q,(x m) = k(xn, x m) (6.6) 
being a function 
(x - x' ), which where we have introduced the kernel junction k (x , x' ) defined by (6.1). In terms of 

:ilations in input the Gram matrix, the sum-of-squares error function can be written as 
;0 known as ra­

1T T 1'1' AT;tance (typically .l (a) = ;:;a KKa - a Kt + ;:; t t + 2a Ka. (6.7) 

ala (2002), Her- Setting the gradient of .J (a ) with respect to a to zero, we obtain the following solu­
tion 

a = (K + AI N)-l t. (6.8) 
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Exercise n.1 

Exercise 6.2 
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If we substitute this back into the linear regression model, we obtain the following 
prediction for a new input x 

(6.9) 

where we have defined the vector k (x) with c lements kn(x ) = k(x n. x ). Thus we 
see that the dual formulation allows the solution to the least-squares problem to be 
expressed entirely in terms of the kernel function k(x , x '). This is known as a dual 
formulalion because, by noting that the solution for a can be expressed as a linear 
combination of the clements of <J>(x ), we recover the original formulation in terms of 
the parameter vector w. Note that the prediclion at x is given by a linear combination 
of the target values from the training set. In fact, we have already obtained this result , 
using a slightly different notation , in Section 3.3.3. 

In the dual fommiation, we determine the parameter vector a by inverting an 
N x N matrix, whereas in the original parameter space formulation we had to invert 
an AI x Al matrix in order to determine w . Because IV is typically much larger 
than AI, the dual formulation does not seem to be particularly useful. However, the 
advantage of the dual formulation , as we shall see, is that it is expressed entirely in 
terms of the kernel function k(x. x' ). We can therefore work directly in terms of 
kernels and avoid the explicit introduction of the feature vector ¢ (x ), which allows 
us implicitly to lise feature spaces of high, even infinite, dimensionality. 

The existence of a dual representation based on the Gram matrix is a properly of 
many linear models, including the perceptron. In Section 6.4, we will develop a dual· 
ity between probabilistic linear models for regression and the technique of Gaussian 
processes. Duality will also play an important role when we discuss support vector 
machines in Chapter 7. 

Constructing Kernels 

In order to exploit kernel substitution, we need to be able to construct valid kernel 
functions. One approach is to choose a feature space mapping <J>(x ) and then use 
thi s to find the corresponding kernel , as is illustrated in Figure 6.1. Here the kernel 
function is defined for a one·dimensional input space by 

k(:c , x') = <J>(X )T¢(x') = L
AI 

<Pi(X)<Pi(X') (6. 10) 
i t 

where <pi (:e) are the basis function s. 
An alternative approach is to construct kernel functions directly. In this case, 

we must ensure that the function we choose is a valid kernel , in other words that it 
corresponds to a scalar product in some (perhaps infinite dimensional) feature space. 
A s a simple example, consider a kernel function given by 

k(x , z) = (x .,.z)' . (6. 11 ) 
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Figure 6.1 Illustration of the construction of kernel functions starting from a corresponding set of basis func­
tions. In each column the lower plot shows the kernel function k(x, x') defined by (6.10) plotted as a function of 
x for x' ~ 0, while the upper plot shows the corresponding basis functions given by polynomials (left column), 
'Gaussians' (centre column), and logistic sigmoids (right column). 

If we take the particular case of a two-dimensional input space x = (Xl, :[2) we 
can expand out the terms and thereby identify the corresponding nonlinear feature 
mappmg 

k:(x, z) (X TZ)2 = (XIZI + :t:2Z2 )2 

1;~ zi + 2XI ZIX2Z2 + x~z~ 
(xi, J2XIX2,X~)(zi, J2ZIZ2,Z~)T 
q,(X)Tq,(z. ). (6.12) 

We see that the feature mapping takes the form q,(x) = (xi, /2:1:,J:2, X~)T and 
therefore comprises all possible second order tenns, with a specific weighting be­
tween them. 

More generally, however, we need a simple way to lest whether a function con­
stitutes a valid kernel without having to construct the function q,(x) explicitly. A 
necessary and sufficient condition for a function k(x, x') to be a valid kernel (Shawe­
Taylor and Cristianini, 2004) is that the Gram matrix K , whose elements are given by 
k(x", x",), should be positive semidefinite for all possible choices or the set {x,,}. 
Note that a positive semidefinite matrix is not the same thing as a matrix whose 

Appendix C elemenls are nonnegative. 
One poweltul technique for constructing new kernels is to build them out of 

simpler kernels as building blocks. This can be done using the following properties: 
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Techniques for Constructing New Kernels. 

Given valid kernels k, (x , x') and k2 (x. x' ), the following new kernels wi ll also 
be valid: 

k (x , x') ck, (x, x' ) (6. 13) 

k(x , x' ) f (x )k , (x , x' )f (x' ) (6.14) 

k (x. x' ) q (k ,(x.x' )) (6.15) 

k (x , x' ) exp (k, (x, x' )) (6. 16) 

k (x , x' ) k, (x, x' ) + k2 (x , x') (6. 17) 

k (x. x') k , (x , x' )k2 (x , x' ) (6. 18) 

k (x , x' ) k3 (q,(x ) , q,(x' )) (6.19) 

k (x , x' ) x'l'Ax' (6.20) 

k(x. x') k" (x u. x~) + kb (X/" x~) (6.2 1 ) 

k(x , x' ) ka (x" ' X~ ) kb(Xb, x~) (6.22) 

where c > 0 is a constant, f O is any function, q(.) is a polynomial with nonneg­
ative coefficients, q,(x ) is a function from x to RA! , k,,(-, ·) is a valid kernel in 
IRA!, A is a symmetric positive semidefinite matrix, X a and Xl, are variables (not 
necessarily disjoint) with x = (xu, xu ), and ka and ku are valid kernel functions 
over their respective spaces. 

Equipped with these properties, we can now embark on the constructi on of more 
complex kernels appropriate to specific applications. We require that the kernel 
k(x , x') be symmetric and positive semidefinite and that it expresses the appropriate 
form of simil ari ty between x and x ' according to the intended application. Here we 
consider a few common examples of kernel functions. For a morc extensive discus­
sion of ' kernel engineering' , sec Shawe-Taylor and Cristianini (2004). 

We saw that the simple polynomial kernel k (x , x' ) = (xTx') 2contains only 
terms of degree two. If we consider the slightly generalized kernel k(x. x') = 

( X T X ' + c) 2 with c > 0, then the corresponding feature mapping q,(x ) contains con­

stant and linear terms as well as terms of order two. Similarly, k(x, x' ) = (xTx') AI 

contains all monomials o f order M. For instance, if x and x' are two images, then 
the kernel represents a particular wcighted sum of all possible products of M pixels 
in the first image with N{ pi xels in the second image . This can similarly be gener­

alized to include all terms up to degree M by consi dering k(x , x' ) = (x1'x' + c)M 
with c > O. Using the results (6.17) and (6. 18) for combining kernels we sec that 
these will all be valid kernel functions. 

Another commonly used kernel takes the form 

k (x. x') = exp (-llx - x' 1I 2 /2a' ) (6.23) 

and is often called a 'Gaussian ' kernel. NOIe, however, that in this context it is 
not interpreted as a probability density, and hence the normalization coefficient is 

Exercise 6.11 

Exercise 6. 12 
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omitted. We can see that this is a valid kernel by expanding the square 

Ilx - x ' 11
2 = xTx + (X')Tx' - 2X'l'X' (6.24) 

to give 

k(x, x' ) = cxp ( - xT x/2(2) exp (XTx' / (52) cxp ( - (x')'"x' / 2(J2) (6.25) 

and then making use of (6.14) and (6.16), together with the validity of the linear 
kcrnel k(x, x' ) = X T x'. Note that the feature vector that corresponds to the Gaussian 
kernel has infinite dimensionality. 

The Gaussian kernel is not restricted to the use of Euclidean distance. If we usc 
kernel substitution in (6.24) to replace XTX' with a nonlinear kernel ,,(x, x'). we 
obtain 

k(X,X') = cxp { - 2:
2 

(r,;(x ,x) + ".(X' , X') - 2r,;(X,XI
))}. (626) 

An impoI1ant contribution to arise from the kernel viewpoint has been the exten­
sion to inputs that arc symbolic. rather than simply vectors of real numbers. Kernel 
functions can be defined over objects as diverse as graphs. sets, strings. and text doc­
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting 
of all possible subsets of this set. If A, and A2 arc two such subsets then one simple 
choice of kernel would be 

k(A" A 2 ) = 2IA,nA,1 (6.27) 

where A, n A2 denotes the intersection of sets A, and A 2 , and IA I denotes the 
number of subsets in A. This is a valid kernel function because it can be shown to 
correspond to an inner product in a feature space. 

One powerful approach to the construction of kernel s starts from a probabilistic 
generative model (Haussler, 1999), which allows us to apply generative model s in a 
discriminative setting. Generative models can deal naturally with missing data and 
in the case of hidden Markov models can handle sequences of varying length . By 
contrast , discriminative models generally give better performance on discriminative 
tasks than generative models. It is there\ore or some interest to combine these two 
approaches (Las serre et aI., 2006). One way to combine them is to use a generative 
model to define a kernel , and then use this kernel in a discriminative approach. 

Given a generative model p(x) we can define a kernel by 

k(x, x' ) = 1'(x)1'(x' ). (6.28) 

This is clearly a valid kernel function because we can interpret it as an inner product 
in the one-dimensional feature space defined by the mapping l'(x). It says that two 
inputs x and x' are similar if they both have high probabilities. We can use (6. 13) and 
(6.17) to extend this class of kernels by considering sums over products of different 
probability distributions, with positive weighting coefficients 1'(i), of the form 

k(x, x') = L p(x li)p(x' li)p(i). (6.29) 
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SeeTioll 13.2 

Exerei,'e 6.13 

Thi s is eq ui valent, up to an overall mul tiplicative constant, to a mi xture di stribution 
in which the components factorize. with the index i playing the role of a ' latent ' 
variable. Two inputs x and x' will give a large value for the kernel function. and 
hence appear similar, if they have signifi cant probability under a range of different 
components. Taking the limit of an infinite sum, we can al so consider kernel s of the 
form 

., (x. x ') = p(x lz)p (x' lz )p(z ) dz (6.30) J 
where z is a continuous latent vari able. 

Now suppose that our data consists of ordered sequences of length L so that 
an observation is given by X = {XI,"" XL}. A popular generative model for 
sequences is the hidtJen Markov model, which expresses the distribution l'(X ) as a 
marginalization over a corresponding sequence of hidden states Z = {Z ll'" ,ZL}. 
We can use this approach to define a kernel function measuring the similarity of two 
sequences X and X ' by extending the mixture representation (6.29) to give 

" (X , X ' ) = L p(X IZ)p(X ' IZ)p(Z ) (6.3 1 ) 
z 

so that both observed sequences are generated by the same hidden sequence Z . This 
model can easily be extended to allow sequences of differing length to be compared. 

An alternative technique for using generative models to define kernel functions 
is known as the Fisher kernel (Jaakkola and Haussler, 1999). Consider a parametric 
generative model p(x l(l ) where (I denotes the vector of parameters. The goal is to 
find a kerne l that measures the si milarity of two input vectors X and x ' induced by the 
generative model. Jaakkola and Haussler ( 1999) consider the gradient with respect 
to e, which defines a vector in a 'feature' space having the same dimensionality as 
(I . In part icular, they consider the Fisher .,·core 

g (O. x ) = V'o lll p (x IO) (6.32) 

from wh ich the Fisher kernel is defined by 

k(x ,x' ) = g (O, x )TF- ' g (O, x ' ) . (6.33) 

Here F is the Fisher illformat ion matrix, given by 

F = lEx [g (O, x )g (O, X)T] (6.34) 

where the expectation is with respect to x under the distributi on p(x IO). This can 
be motivated from the perspective of illformaTioll geomeTry (Amari , 1998), which 
considers the differential geometry of the space of model parameters. Here we sim­
ply note that the presence of the Fisher information matrix causes this kernel to be 
invariant under a nonlinear re-parameterization of the density model 0 -> 'I/J (0). 

In practice, it is often infeasible to evaluate the Fisher information matrix. One 
approach is simply to replace the ex pectation in the definition of the Fisher informa­
lion with the sample average, giving 

N 

F ~ IV1" ~g(O, xn)g(O , xn )T . (6.35) 
11. = 1 
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This is the covariance matrix of the Fisher scores, and so the Fisher kernel corre­
sponds to a whitening of these scores. More simply, we can just omit the Fisher 
information matrix altogether and use the noninvariant kernel 

k(x , x ') = g(B,xrg(B, x'). 	 (6.36) 

An application of Fisher kernels to document retrieval is given by Hofmann (2000) . 
A final example of a kernel function is the sigmoidal kernel given by 

k (x , x' ) = tanh (axTx' + b) 	 (6.37) 

whose Gram matrix in general is not positive semidefinite. This form of kernel 
has, however, been used in practice (Vapnik, 1995), possibly because it gives kernel 
expansions such as the support vector machine a superficial resemblance to neural 
network models. As we shall see, in the limit of an infinite number of basis functions , 
a Bayesian neural network with an appropriate prior reduces to a Gaussian process, 
thereby providing a deeper link between neural networks and kernel methods. 

Radial Basis Function Networks 

In Chapter 3, we discussed regression models based on linear combinations of fixed 
basis functions, although we did not discuss in detail what form those basis functions 
might take. One choice that has been widely used is that of radial basis JUl1elio"", , 
which have the property that each basis function depends only on the radial distance 
(typically Euclidean) from a centre I-' j , so that ¢j(x ) = h( llx - I-' j II )· 

Historically, radial basi s functions were introduced for the purpose of exact func­
tion interpolation (Powell, 1987). Given a set of input vectors {Xl" " , X N } along 
with corresponding target values {i'l , ... , tN }, the goal is to find a smooth function 
f (x ) that fits every target value exactly, so that l (x".) = tn for n = 1, ... , N . This 
is achieved by expressing f (x ) as a linear combination of radial basis functions , one 
centred on every data point 

f (x ) = 	 L
N 

wn
• 

h(llx - X " II)· (6.38) 

n = l 

The values of the coefficients {71J,, } are found by least squares, and because there 
are the same number of coefficients as there are constraints, the result is a function 
that fits every target value exactly. In pattern recognition applications, however, the 
target values are generally noisy, and exact interpolation is undesirable because this 
corresponds to an over-fitted solution. 

Expansions in radial basis functions also arise from regularization theory (Pog­
gio and Girosi , 1990; Bishop, 1995a). For a sum-of-squares error function with a 
regularizer defined in terms of a differential operator, the optimal solution is given 
by an expansion in the Green 's junctions of lhe operator (which are analogous to the 
eigenvectors of a discrete matrix), again with one basis function centred on each data 
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