
7 


In the previous chapter, we explored a variety of learning algorithms based on non­
linear kernels. One of the significant limitations of many such algorithms is that 
the kernel function k(xn) xm) must be evaluated for all possible pairs X n and X m 

of training points, which can be computationally infeasible during training and can 
lead to excessive computation times when making predictions for new data points. 
In this chapter we shall look at kernel-based algorithms that have sparse solutions, 
so that predictions for new inputs depend only on the kernel function evaluated at a 
subset of the training data points. 

We begin by looking in some detail at the support vector machine (SYM), which 
became popular in some years ago for solving problems in classification, regression, 
and novelty detection. An impOltant property of support vector machines is that the 
determination of the model parameters corresponds to a convex optimization prob­
lem, and so any local solution is also a global optimum. Because the di scussion of 
support vector machines makes extensive use of Lagrange multipliers, the reader is 
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encouraged to review the key concepts covered in Appendix E. Additional infor­
mation on support vector machines can be found in Vapnik ( 1995), Burges (1998), 
Cristianini and Shawe-Taylor (2000), Muller et al. (200 1), Schiilkopf and Smola 
(2002), and Herbrich (2002). 

The SVM is a decision machine and so does not provide posterior probabilities. 
We have already discussed some or the benefits of determining probabilities in Sec­
tion 1.5.4. An alternative sparse kernel technique, known as the relevance veCTOr 

Sec/ion 7.2 machine (RYM), is based on a Bayesian fOffilUlation and provides posterior proba­
bilistic outputs, as well as having typically much sparser solutions than the SVM. 

7.1. Maximum Margin Classifiers 

We begin our discussion of sUppOI1 vector machines by returning to the two-dass 
classification problem using linear models of the form 

y(X) = w T cf>(x ) + Ii (7. 1 ) 

where cf> (x ) denotes a fixed feature-space transfurmation, and we have made the 
bias parameter b explicit. Note that we shall shol1ly introduce a dual representation 
expressed in terms of kernel functions, wh ich avoids having to work explicitly in 
feature space. The training data set comprises N input vectors X l ) .... X N, with 
corresponding target values t 1 J ' •• J tN where tn E {- I, I}. and new data points x 
are classified according to the sign or y(x ). 

We shall assume for the moment that the training data set is linearly separable in 
feature space, so that by definition there exists at least one choice of the parameters 
wand b such that a runction of the form (7. 1) satisfies y(x n ) > 0 for points havi ng 
"n= + 1 and y (x n) < 0 for points having tn = - 1, so that I ny (x n) > 0 for all 
training data points. 

There may of course exist many such solutions that separate the classes exactly. 
In Section 4.1.7, we described the perceptrun algorithm that is guaranteed tu find 
a solution in a finite number of steps. The solution that it finds, however, will be 
dependent on the (arbitrary) initial values chosen ror wand b as well as on the 
ordcr in which the data points are presented. If there are multiple solutiuns all of 
which classify the training data set exactly, then we should try to find the one that 
will give the smallest generalization error. The support vector machine approaches 
this problem through the concept of the margill , which is defined to be the smallest 
distance between the decision boundary and any of the samples, as illustrated in 
Figure 7.1. 

In SUppOI1 vector machines the decision boundary is chosen to be the one for 
which the margin is maximized. The maximum margin solution can be motivated lIS­

Se('/ioll 7.1.5 ing complllationallearlliliK the01Y, also known as statistical/earning theory. How­
ever, a simple insight into the origins or maximum margin has been given by Tong 
and Koller (2000) who consider a framework ror classification based on a hybrid or 
generative and discriminative approaches. They first model the distribution over in­
put vectors x for each class using a Parzen density estimator with Gaussian kernels 

• 
•

• 


marg~ 
Figure 7.1 The 
of the data pOint 
boundary, as she 
known as supp~r 



• 
• 

• 

• • 

• 
• 

• 

• • 

7.1. Maximum Margin Classifiers 327 

Additional infor­
), Burges (1998), y = l y= - I 

,Ikopf and Smola y = O• • y = o 
Y = - 1• • • • y=lrior probabilities. 

)babilities in Sec­
relevance veclor •• 

; posterior proba­
than the S VM. 

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest 
, to the two-class of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision 

boundary, as shown on the right. The location of this boundary is determined by a subset of the data paints, 
known as support vectors, which are indicated by the circles. 

(7.1 ) 

e have made the having a common parameter a'. Together with the class priors, this defines an opti­
ml representation mal misclassification -ratc deci sion boundary. However, instead of using this optimal 
IOrk explicitly in boundary, they determine the best hyperplane by minimizing the probability of error 
>::1,'··' x N. with relative to the learned density model. In the limit (J2 -+ O. the optimal hyperpl ane 
ew data points x is shown to be the one having maximum margin. The intuition behind this result is 

that as u 2 is reduced, the hyperplane is increasingly dominated by nearby data points 
,.rly separable in relative to more distant ones. In the limit, the hyperplane becomes independent of 
)f the parameters data points that arc not support vectors. 
for points having We shall see in Figure 10.13 that marginalization with respect to the prior distri­
(xn) > 0 for all bution of the parameters in a Bayesian approach for a simple linearly separable data 

set leads to a decision boundary that lies in the middle of the region separating the 
e classes exactly. data points. The large margin solution has similar behaviour. 
Jaranteed to find Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper­
however, will be plane defined by y(x) = 0 where y(x) takes the form (7. 1) is given by ly(x) l/llwl l. 
s well as on the Furthemnore, we are only interested in s(, lutions for which all data points are cor­
, solutions all of rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point Xn to the 
find the one that decision surface is given by 
;hine approaches 

tnY( Xn) t,,(wTcjJ(Xn) + b)o be the smallest (7.2) 
as illustrated in Ilwll Il wll 

The margin is given by the perpendicular distance to the closest point Xn from the 
o be the one for data set, and we wish to optimize the parameters wand b in order to maxi mize this 
be motivated us­ di stance. Thus the max imum margin solution is found by solving 
ng theory. How­
'n given by Tong 

(7.3);d on a hybrid of argw',',:aJC { II ~ II m~n [tn (wTcjJ(Xn) +b) ] } 
:ribution over il1­
3aussian kernel s where we have taken the factor l /llwll outside the optimization over n because w 
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does not depend on n. Direct solution of this optimization problem would be very 
complex, and so we shaH convert it into an equivalent problem that is much easier 
to solve. To do this we note that if we make the rescaling w -> K W and b -> Kb, 

then the distance from any point X n to the decision surface, given by tny(xnl /ll w ll , 
is unchanged. We can use thi s fTeedom to set 

(7.4) 

for the point that is closest to the surface. In thi s case, all data points will satisfy the 
constraints 

n = l , ... ,N. (7.5) 

This is known as the canonical representation of the deci sion hyperplane. In the 
case of data points for which the equality holds, the constraints are said to be active, 
whereas for the remainder they are said to be inactive. By definition, there will 
always be at least onc active constraint, because there will always be a closest point, 
and once the margin has been maxim.i zed there will be at least two active constraints. 
The optimi zation problem then simply requires that we maximi ze Il w ll - 1

, which is 
equivalent to minimi zi ng Il w 112 , and so we have to solve the optimization prob lem 

argm in -l
1 

lw ll 
~ (7.6) 

w ,b 2 

subject to the constraints given by (7.5). The factor of 1/ 2 in (7.6) is inc luded for 
later convenience. This is an example of a quadratic plVgrallllllilig problem in which 
we are trying to minimi ze a quadratic function subject to a set of linear inequality 
constraints. It appears that the bias parameter b has disappeared from the optimiza­
tion. However, it is determined implicitly via the constraints, because these require 
that changes to II w ll be compensated by changes to /,. We shall see how thi s works 
shonly. 

Tn order to solve thi s constrained optimization problem, we introduce Lagrange 
multipliers an ~ 0, with one multiplier an for each of the constraints in (7.5), giving 
the Lagrangian functi on 

N 

L (w , b, a l = ~ llw ll~ - L an {tn (w Tq,(x nl +1» - I} (7.7) 
n = 1 

where a = (al) ... )aN)T. Note the minus sign in front of the Lagrange multiplier 
tenn, because we are minimizing with respect to wand b, and maximizing with 
respect to a. Setting the derivatives of L(w , b, a l with respect to wand b equal to 
zero, we obtain the following two conditions 

N 

W = L antnq, (x"l (7.8) 
n=l 

0 

N

L (1,n Ln. (7.9) 
1l=1 

~~...I . \ . 
, 
Y 

.; ;" . 



m would be very 
at is much easier 
'i:W and b -----+' Kb, 
'y tny(xn)/llwl l, 

(7.4) 

ts will sat isfy the 

(7.5) 

perplane. In the 
said to be active, 
1ition, there wi II 
Ie a closest point, 
.clive constraints. 
Ilwll-J, which is 
zation problem 

(7.6) 

» is included for 
)roblem in which 
linear inequali ty 
)m the optimiza­
use these req uire 
, how this works 

roduce Lagrange 
Is in (7.5), giving 

l} (7.7) 

7.1. Maximum Margin Classifiers 329 

Eliminating wand b from L (w , b. a) using these conditions then gives the dual 
represe1lfatioll of the maximum margin problem in which we maximize 

_ N 1 N N 


L(a) = L (1,,, - ? L L anamtntmk(xn, xm) (7.10) 

n=l ... n ::::. l rn= l 

with respect to a subject to the constraints 

an ~ 0, n = 1, ... ,N, (7. 11 ) 
N

Lantn o. (7.12) 
n = l 

Here the kernel function is defined by k(x, x') = <t>(x)T <t> (x' ). Again. this takes the 
form of a quadratic programming problem in which we optimize a quadratic function 
of a subject to a set of inequality constraints. We shall discuss techniques for solving 
such quadratic programming problems in Section 7.1.1. 

T he solution to a quadratic programming problem in M variables in general has 
computational complexity that is O(M3 ) . In going to the dual formu lation we have 
turned the original optimization problem, which involved minimi zing (7.6) over M 
variables, into the dual problem (7. 10), which has N variables. For a fixed SCI of 
basis functions whose number M is smaller than the number N of data points, the 
move to the dual problem appears disadvantageous. However, it allows the model to 
be reformulated using kernels, and so the max imum margin classifier can be applied 
efficiently to feature spaces whose dimensionality exceeds the number of data points, 
inc luding infinite feature spaces. The kernel formu lation also makes clear the role 
of the constraint that the kernel function k(x , x') be positive definite, because this 

ensures that the Lagrangian fu nction Era) is bounded below, giving rise to a well­
defined optimi zation problem. 

In order to classify new data points using the trained model, we evaluate the sign 
of y(x ) defined by (7 .1 ). Thi s can be expressed in terms of the parameters {an} and 
the kernel function by substituting for w using (7.8) to give 

N 

y (x ) = L antnk(x, x n) + b. (7.13) 
/1 = 1 

~range multi plier 
naximizing with 
wand b equal to 

(7.8) 

(7.9) 

Joseph-Louis Lagrange 
1736-1813 

Although widely considered to be 
a French mathematician, Lagrange 
was born in Turin in Italy. By the age 
of nineteen, he had already made 
important contributions mathemat­
ics and had been aooointed as Pro-

years, Euler worked hard to persuade Lamanae 
move to Bertin, which he eventually did in 
he succeeded Euler as Director of Mathematics 
the Berlin Academy. later he moved to Paris, 
rowly escaping with his life during the French 
lution thanks to the personal intervention of laVOiSierl 
(the French chemist who discovered oxygen) who him­
self was later executed at the guillotine. lagrange 
made key contributions to the calculus of variations. 

.. 
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Figure ' In Appendi x E, we show that a constrained optimization of th is form satisfies the 
Karllsh·KlIhn·TlIcker (KKT) conditions, which in thi s case require that thc following 
three properties hold 

an ~ 0 (7. 14) 


tnY(Xn) - 1 ;;, 0 (7. 15) 


Un {tny(x n) - I} O. (7. 16) 


Thus for every data point, either an = 0 or tny(x n) = 1. Any data point for 
which a" = 0 will not appear in the sum in (7 .1 3) and hence plays no role in making 
predictions for new data points. The remaining data points are called support vectors, 
and because they sat isfy lny(x n) = 1, they correspond to points that lie on the 
maximum margin hyperplanes in feature space, as illustrated in Figure 7. 1. This 
property is central to the practical appl icability of support vector machines. Once 
the model is trained, a significant proportion of the data points can be discarded and 
only the support vectors retained. 

Having solved the quadratic programming problem and found a value for a , we 
can then determine the value of the threshold parameter b by noting that any support 
vector Xn sat isfies lny(x n) = 1. Using (7. 13) thi s gives 

(7. 17) 

where S denotes the set of indices of the support vecto",. Al though we can solve 
this equation for b using an arbitrarily chosen support vector X I/, . a numerically morc 
stab le solution is obtained by fi rst multiplying through by tn, making use of f.~ = 1, 
and then averaging these equations over all support vectors and solving for b to give 

(7. 1 K) 

where Ns is the total number of support vectors. 
For later comparison wi th ahernativc mode ls, we can express the maximum­

margi n classifi er in terms of the minimi zation of an error funcLion, with a simple 
quadratic regularizeI', in the form 

N

L E=(1J(x n )t n - 1) + All w l1 2 (7. 19) 
n=l 

where E= (z) is a fun ction that is zero if z ;;, 0 and 00 otherwise and ensures that 
the constrai nts (7.5) are satisfi ed. Note that as long as the regulari zation parameter 
satisfies A > 0, its precise value plays no role. 

Figure 7.2 shows an example of the classification resulting from training a sup­
port vector machine on a simple syntheLic data set using a Gaussian kernel of the 
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Figure 7.2 Example of synthetic data from 
two classes in two dimensions 
showing contours of constant 
y(x) obtained from a support 
vector machine having a Gaus­
sian kernel function. Also shown 
are the decision boundary, the 
margin boundaries, and the sup­
port vectors. 
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form (6.23). Although the data set is not linearly separable in the two-dimensional 
data space x , it is linearly separable in the nonlinear feature space defined implicitly 
by the nonlinear kernel function. Thus the training data points are perfectly separated 
in the original data space. 

This example also provides a geometrical insight into the origin of sparsity in 
the SVM. The maximum margin hyperplane is defined by the location of the support 
vectors. Other data points can be moved around freely (so long as they remain out· 
side the margin region) without changing the decision boundary, and so the solution 
will be independent of such data points. 

7.1.1 Overlapping class distributions 

So far, we have assumed that the training data points are linearly separable in the 
feature space <J>(x ). The resulling support vector machine will give exact separation 
of the training data in the original input space x , although the corresponding deci sion 
boundary will be nonlinear. In practice, however, the class·conditional distributions 
may overlap, in which case exact separation of the training data can lead to poor 
generalization. 

We therefore need a way to modify the support vector machine so as to allow 
some of the training points to be misclassified. From (7.19) we see that in the ease 
of separable classes, we implicitly used an error function that gave infinite error 
if a data point was misclassified and zero error if it was classified correctly, and 
then optimized the model parameters to maximize the margin. We now modify thi s 
approach so lhat data points are allowed to be on the ' wrong side' of the margin 
boundary, but with a penalty that increases with the dislance from that boundary. For 
the subsequent optimization problem, it is convenient to make this penalty a linear 
function of this distance. To do this, we introduce slack variables , t;n ) 0 where 
11. = 1, .. " N , with one slack variable for each training data point (Bennett, 1992; 
Cortes and Vapnik, 1995). These arc defined by ~n = 0 for data points that are on or 
inside the correct margin boundary and~" = It" - y(xn)1 for other points. Thus a 
data point that is on the decision boundary y(x n) = 0 will have ~" = 1, and points 

l 
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Figure 7.3 	 IIluslralion of the slack variables ~" ;;, O. 
Data points with circles around them are y =-10 
support vectors. o 

o y= 1 
o 

° 

0"= 0 
° 

1' = 0 

with ~n > 1 will be misclassified. The exact classification constraints (7.5) are then 
replaced with 

n= 1, ... jN (7.20) 

in which the slack variables arc constrained to satisfy ( n ;, O. Data points for which 
~n = 0 are correctly classified and arc either on the margin or on the correct side 
of the margin. Points for which 0 < ~n ~ 1 lie inside the margin. but on the cor· 
rect side of the decision boundary, and those data points for which ~n > I lie on 
the wrong side of the decision boundary and are misclassified, as illustrated in Fig­
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a 
sofi margin and allows some of the training set data points to be misclassificd. Note 
that while slack variables allow for overlapping class distributions, this framework is 
still sensitive to outliers because the penalty for misclassification increases linearly 
with ( . 

Our goal is now to maximi ze the margin while softly penalizing points that lie 
on the wrong side of the margin boundary. We therefore minimize 

N 1 
(7.21)C L (" + 211 wl12 

n=l 

where the parameter C > 0 controls the trade-off between the slack variable penalty 
and the margin. Because any point that is misclassified has ~n > 1, it follows that 
L:.,. ~n is an upper bound on the number of misclassified points. The parameter C is 
therefore analogous to (the inverse of) a regularization coefficient because it controls 
the trade-off between minimizing training errors and controlling model complexity. 
In the limit C --> 00, wc will recover the earlier support vector machine for separable 
data. 

We now wish to minimi ze (7.21) subject to the constraints (7.20) together with 
~n ;, O. The corresponding Lagrangian is given by 

1 N N 	 N 

L (w , b, a) = 211 w112+C L (n -L an{t" y (x ,,) - 1 H,,} - L /Ln~n (7.22) 
n=l n=l 	 n= l 
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where {a" ~ O} and {I,,, ~ O} are Lagrange multipliers. The corresponding set of 
KKT conditions are given by 

an ~ 0 (7.23) 

t ny{xn) - 1 + ~n ~ 0 (7.24) 

an (tny{x n) - 1 + ~n) 0 (7.25) 

ttn ~ 0 (7.26) 

~n ~ 0 (7.27) 

I'n~n = 0 (7.28) 

where n = 1, ... ,N. 
We now optimize out w , b, and {~,,} making use of the definition (7.1) of y{x) 

to give 

N 
8L = 0 =? w = L ant nc/>{xn) (7.29)
8w 

n=l 

N 
8L = 0 =? Lanln= 0 (7.30)
8b 

n=l 

8L 
=? an = C - {Ln. (7.31)8~n = 0 

Using these results to eliminate w, b, and {~n} from the Lagrangian, we obtain the 
dual Lagrangian in the form 

_ N 1 N N 

L(a) = Lan- '2 L L anamtntmk(xn , Xm) (7.32) 
n=l n=l m=l 

which is identical to the separable case, except that the constraints are somewhat 
different. To see what these constraints are, we note that an ~ 0 is required because 
these are Lagrange multipliers. Furtbermllre, (7.31) together with !In ~ 0 implies 
an ,;; C . We therefore have to minimize (7.32) with respect to the dual variables 
{an } subject to 

o~ an:::;; C (7.33) 
N

Lautn = 0 (7.34) 
n=l 

for n = 1, ... , N, where (7.33) are known as box constraints. This again represents 
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that 
predictions for new data points are again made by using (7.13). 

We can now interpret the resulting solution. As before, a subset of the data 
points may have a" = 0, in which case they do not contribute to the predictive 
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model (7.13). The remaining data points constitute the SUppOlt vectors. These have Figure 
a n > 0 and hence from (7.25) must satisfy 

(7.35) 

If a n < C, then (7.31) implies that J.'n > 0, which from (7.28) requires ~n = 0 and 
hence such points lie on the margin. Points with an = C can lie inside the margin 
and can either be correctly classified if f,n ~ 1 or misclassified if ~n > l. 

To determine the parameter b in (7.1), we note that those support vectors for 
which 0 < an < C have ~n = 0 so that tny(x n) '" 1 and hence will satisfy 

(7.36) 

Again, a numerically stable solution is obtained by averaging to give 

(7.37) 

where M denotes the set of indices of data points having 0 < an < C. 
An alternative, equivalent formulation of the support vector machine, known as 

the v -SVM, has been proposed by Schiilkopf el al. (2000). This involves maximizing 

_ 

L(a) = 

1 N N 

- 2 L L anamtntmk(x", x",) (7.38) 
n=1111= 1 

subject to the constraints 

o~ an :;( l i N (7.39) 
N 

Lantn = 0 (7.40) 
11= 1 

N 

Lan ~ v. (7.41 ) 
n = 1 

This approach has the advantage that the parameter // , which replaces C , can be 
interpreted as both an upper bound on the fraction of margin errors (points for which 
f.n > 0 and hence which lie on the wrong side of the margin boundary and which may 
or may not be rnisclassified) and a lower bound on the fraction of support vectors. An 
example of the v-SVM applied to a synthetic data set is shown in Figure 7.4. Here 
Gaussian kernels of the form exp (-'Illx - x' 1I 2) have been used, with 'I = 0.45. 

Although predictions for new inputs are made using only the support vectors, 
the training phase (i.e., the determination of the parameters a and b) makes use of 
the whole data set, and so it is important to have efficient algorithms for solving 



.

j 

!ctor~. These have 

(7.35) 

quires ~n = 0 and 
inside the margin 

;n > l. 
upport vectors for 
' ill satisfy 

(7.36) 

Ive 

(7.37) 

<c. 
lachine, known as 
'olves maximizing 

(7.38) 

(7.39) 

(7.40) 

(7.41 ) 

place~ C, can be 
(points for which 

ry and which may 
Ipport vectors. An 
Figure 7.4. Here 

with 'Y = 0.45. 
! support vector~, 

b) makes use of 
ithms for ~olving 

7.1. Maximum Margin Classifiers 335 

Figure 7.4 Illustration of the I'-SVM applied 
to a nonseparable data set in two 
dimensions. The support vectors 
are indicated by circles. 2 
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the quadratic programming problem. We first note that the objective function L(a) 
given by (7. 10) or (7.32) is quadratic and so any local optimum will also be a global 
optimum provided the constraints define a convex region (which they do as a conse­
quence of being linear). Direct ~olution of the quadratic programming problem us­
ing traditional techniques is often infeasible due to the demanding comput.at.ion and 
memory requirements, and so more practical approaches need to be found. The tech­
nique of eilunking (Vapnik, 1982) exploits the fact that the value of the Lagrangian 
is unchanged if we remove the rows and columns of the kernel matrix corresponding 
to Lagrange multipliers that have value zero. This allows the full quadratic pro­
gramming problem to be broken down into a series of smaller ones, whose goal is 
eventually to identify all of the nonzero Lagrange multipliers and discard the others. 
Chunking can be implemented using protected conjugate gradients (Burges, 1998). 
Although chunking reduces the size of the matrix in the quadratic function from the 
number of data point~ ~quared to approximately the number of nonzero Lagrange 
multipliers ~quared, even this may be too big to fit in memory for large-scale appli­
cations. Decomposition methods (Osuna et ai., 1996) also solve a series of smaller 
quadratic programming problems but are designed so that each of these is of a fixed 
size, and so the technique can be applied to arbitrarily large data sets. However, it 
still involves numerical ~olution of quadratic programming subproblem~ and these 
can be problematic and expensive. One of the mo~t popular approaches to training 
support vector machines is called sequelltial minimal optimizatioll, or SMO (Platt, 
1999). It take~ the concept of chunking to the extreme limit and considers just two 
Lagrange multipliers at a time. In thi ~ case, the subproblem can be solved analyti­
cally, thereby avoiding numerical quadratic programming altogether. Heuristics are 
given for choosing the pair of Lagrange multipliers to be considered at each step. 
In practice, SMO is found to have a scaling with the number of data point~ that is 
somewhere between linear and quadratic depending on the particular application. 

We have seen that kernel functions correspond to inner products in feature space~ 
that can have high, or even infinite, dimensionality. By working directly in terms of 
the kernel function, without introducing the feature space explicitly, it lnight there­
fore seem that support vector machines somehow manage to avoid the curse or di­

"'­
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Section 1.4 

Seclioll 4.3.2 

mensionality. This is not the case, however, because there are constraints amongst 
the feature values that restrict the effective dimensionality of feature space. To see 
this consider a simple second-order polynomial kernel that we can expand in tcrms 
of its components 

= 1 + 2X1Zl + 2X2Z2 + xrzr + 2:1;lZ1:/:2 Z2 + x~ z~ 
(1, J2Xl,J2X2, x~, J2X,X2 , 1:~)(1 , J2z J2z2,z~, J2z j z2,ZDT

" <j>(X)T <j>(z). (7.42) 

This kernel functioQ therefore represents an inncr product in a feature space having 
six dimensions, in which the mapping from input space to feature space is described 
by the vector function <j>(x). Howevcr, the coefficients weighting these different 
features are constrained to have specific forms. Thus any set of points in the original 
two-dimensional space x would be constrained to lie exactly on a two-dimensional 
nonlinear manifold embedded in the six-dimensional feature space. 

We have already highlighted the fact that the support vector machine does not 
provide probabilistic outputs but instead makes classification decisions for new in­
put vectors. Veropoulos el al. (1999) discuss modifications to thc SVM to allow 
the trade-off between false positive and falsc negative errors to be controlled. How­
ever, if we wish to use the SVM as a module in a larger probabilistic system, then 
probabilistic predictions of the class labcl t for new inputs x are required. 

To address this issue, Platt (2000) has proposed fitting a logistic sigmoid to thc 
outputs of a previously trained support vector machine. Specifically, the required 
conditional probability is assumed to bc of the form 

p(t = llx) = (J (Ay(x) + B ) (7.43) 

where y(x) is defined by (7.1). Values for the parameters A and B are found by 
minimizing the cross-cntropy error function defined by a training set consisting of 
pairs of values y(xn) and t". The data used to fit the sigmoid needs to be independent 
of that used to tTain the original SVM in order to avoid severe over-fitting. This two­
stage approach is equivalent to assuming that the output y(x) of the support vector 
machine represents the log-odds of x belonging to class t = 1. Becausc the SVM 
training procedure is not specifically intended to encourage this, thc SVM can give 
a poor approximation to the posterior probabilities (Tipping, 200]). 

7.1.2 Relation to logistic regression 
As with the separable case, we can re-cast the S V M for nonseparable distri­

butions in terms of the minimization of a regularized error function. This will also 
allow us to highlight similarities, and dirrerences, compared to the logistic regression 
model. 

We have seen that for data points that are on the correct side of thc margin 
boundary, and which therefore satisfy 1/"t" :;, 1, we have ~n = 0, and for thc 

Figure 
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Figure 7.5 

Exercise 7.6 

Plot of the 'hinge' error function used 
in support vector machines, shown 
in blue, along with the error function 
for logistic regression , rescaled by a 
factor of 1/ ln(2) so that it passes 
through the point (0, 1), shown in red. 
Also shown are the misclassification 
error in black and the squared error 
in green. 

I "=.;\ <' .. z 
- 2 -1 0 1 2 

remaining points we have ~n = 1 - Yntn . Thus the objective function (7 .21) can be 
written (up to an overall multiplicative constant) in the form 

N 

(7.44)L E sv (Yntn) + .\llwll ' 
n= 1 

where.\ = (2C)-1, and EsvO is the hinge error function defined by 

Esv(y" t n ) = [1 - Ynt nJ+ (7.45) 

where [ ·1+ denotes the positive part. The hinge error function , so-called because 
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the 
misclassification error, i.e. , the error function that ideally we would like to minimize, 
which is also shown in Figure 7.5. 

When we considered the logistic regression model in Section 4.3.2, we found it 
convenien t to work with target variable t E (0 , 1}. For comparison with the support 
vector machine, we first rerormulate maximum likelihood logistic regression using 
the target variabl e t E {-I , I}. To do this, we note that pet = I IY) = aCyl where 
!I (x ) is given by (7. 1), and aCyl is the logistic sigmoid fu nction defined by (4.59). It 
follows that pet = - I IY) = 1 - 17 (11 ) = a(-y ), where we have used the properties 
of the logi sti c sigmoid function, and so we can write 

p(tI Y) = a(yt ). (7.46) 

From this we can construct an error function by taking the negative logarithm of the 
likelihood function that , with a quadratic regularizer, takes the form 

N

L ELR(Yntn) + .\ lIw ll ~· (7.47) 
n = l 

where 
ELR(yt) = In (1 + exp(- y t )) . (748) 

.......oioo.... 
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For comparison with other error functions. we can divide by In (2) so that the error 
function passes through the point (0, 1). This rescaled error function is also plotted 
in Figure 7.5 and we see that it has a similar form to the support vector error function. 
The key difference is that the flat region in E sv(yt ) leads to sparse solutions. 

Both the logistic error and the hinge loss can be viewed as continuous approx­
imations to the misc1assification error. Another continuous error function that has 
sometimes been used to solve classification problems is the squared error, which 
is again plotted in Figure 7.5. It has the property, however, of placing increasing 
emphasis on data points that are correctly classified but that are a long way from 
the decision boundary on the correct side. Such points will be strongly weighted at 
the expense of misc1assified points, and so if the objective is to minimize the mis­
classification rate, tllen a monotonically decreasing error function would be a better 
choice. 

7.1.3 Multiclass SVMs 
The support vector machine is fundamental1y a two-class classifier. In practice, 

however, we often have to tackJe problems invol ving I( > 2 classes. Various meth­
ods have therefore been proposed for combining multiple two-cia" SVMs in order 
to build a multiclass classifier. 

One commonly used approach (Vapnik, 19%) is to construct T< separate SVMs. 
in which the k'h model Yk( X) is trained using the data from class Ck as the positive 
examples and the data from the remaining f( - 1 classes as the negat.ive examples. 
This is known as the one-versus-Ihe-resl approach. However, in Figure 4.2 we saw 
that using the decisions of the individual classifiers can lead to inconsistent results 
in which an input is assigned to multiple classes simultaneously. This problem is 
sometimes addressed by making predictions for new inputs x using 

Y( X) = maxYk(x ). (7.49) 
k 

Unfortunately, this heuristic approach suffers from the problem that the different 
classifiers were trained on different tasks, and there is no guarantee that Ihe real­
valued quantities Yk (X) for different classifiers will have appropriate scales. 

Another problem with the one-versus-the-rest approach is that the training sets 
are imbalanced. For instance, if we have ten classes each with equal numbers o[ 
training data points, then t.he individual classifiers are trained on data sets comprising 
90% negative examples and only 10% positive examples, and the symmetry of the 
original problem is lost. A variant of the one-versus-the-rest scheme was proposed 
by Lee el al. (200 I) who modify the target values so that the positive class has target 
+ 1 and the negative class has target - 1/ (J< - 1). 

Weston and Watkins (1999) define a single objective [unction for training all 
I( SVMs simultaneously, based on maximizing the margin from each to remaining 
classes. However, this can result in much slower training because, instead of solving 
K separat.e optimization problems each over N data points wit.h an overall cost. of 
O(J{ N 2 ), a single optimization problem of size (J{ - 1)N must be solved giving an 
overall cost of 0 ([(2 N 2

) . 

Secliol) 3.1.4 
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Another approach is to train J( ( J( -1)/2 different 2-class SVMs on all possible 
pairs of classes, and then to classify test points according to which class has the high­
est number of 'votes' , an approach that is sometimes called one-versus-one. Again. 
we saw in Figure 4.2 that this can lead to ambiguities in the resulting classification. 
Also, for large J( this approach requires significantly more training time than the 
one-versus-the-rest approach. Similarly, to evaluatc tcst points, significantly more 
computation is required. 

Thc lattcr problcm can be alleviated by organizing the pairwise classifiers into 
a directed acyclic graph (not to be confused with a probabilistic graphical model) 
Icading to the DACSVM (Platt et ai., 2(00). For J( classes, the DAGSYM has a total 
of J( ( J( - 1)/ 2 classifiers, and to classify a new test point only J( - 1 pairwise 
classifiers need to be evaluated, with the parlicular classifiers used depending on 
which path through the graph is traversed. 

A different approach to multiclass classification, based on error-correcting out­
put codes, was developed by Dicttcrich and Bakiri (1995) and applied to support 
vector machines by Allwein et al. (2000). This can be viewed as a generali zation of 
the voting scheme of the one-versus-one approach in which more general partitions 
of the classes are used to train the individual classifiers. The J( classcs themselves 
are represented as particular sets of responses from the two-class classifiers chosen, 
and together with a suitable decoding scheme, this gives robustness to errors and to 
ambiguity in the outputs of the individual classifiers. Although the application of 
SYMs to multiclass classification problems remains an open issue, in practice the 
one-versus-the-rest approach is the most widely used in spite of its ad-hoc formula­
tion and its practical limitations. 

There arc al so single-class support vector machines, which solve an unsuper­
vised learning problem related to probability density estimation. Instead of mod­
elling the density of data, however, these methods aim to find a smooth boundary 
enclosing a region of high density. The boundary is chosen to reprcsent a quantile of 
the density, that is, the probability that a data point drawn from the distribution will 
land inside that region is givcn by a fixed number between 0 and I that is specified in 
advance. This is a more restricted problem than estimating the full density but may 
be sufficient in specific applications. Two approaches to this problem using support 
vector machines have been proposed. The-algorithm of Schiilkopf et ai. (2001) tries 
to find a hyperplane that separates all but a fixed fraction // of the training data from 
the origin whilc at the samc time maximizing the distance (margin) of the hyperplane 
from the origin, while Tax and Ouin (1999) look for the smallest sphere in feature 
space that contains all but a fraclion 1/ of the data points. For kernels k(x ,x') that 
are functions only of x - x ', the two algorithms are equivalent. 

7.1.4 SVMs for regression 
We now extend SUppOlt vector machines to regression problems while at the 

nstead of solving Sectioll 3./.4 same time preserving the property of sparseness. In simple linear regression, we 
.n overall cost of 
solved giving an 
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Figure 7.6 	 Plot of an ( -insensitive error function (in 
red) in which the error increases lin­
early with distance beyond the insen­
sitive region. Also shown for compar­
ison is the quadratic error function (in 
green). 

minimize a regularized error function given by
• 

N 
l,,{ 2.\ 22L- Yn - t,.} + 211wll . 	 (7.50) 

n -= l 

To obtain sparse solutions, the quadratic error function is replaced by an t>insensilive 
error junction (Vapnik. 1995), which gives zero error if the absolute difference be­
tween the prediction y(x) and the target t is less than E where E > O. A simple 
example of an f-insensitive error function, having a linear cosl associated with errors 
outside the insensitive region, is given by 

E ( () t) _ { 0, if IY(x ) - tl < c; (7.51 )'-, y x - - Iy(x) - tl - E, otherwise 

and is illustrated in Figure 7.6. 
We therefore minimize a regularized error function given by 

N 

C L E,(y(x,,) - tn) + ~ IIwl1 2 	 (7.52) 
n=] 

where y(x) is given by (7.1). By convention the (inverse) regularization parameter, 
denoted C, appears in front of the error term. 

As before, we can re-express the optimization problem by introducing slack 
variables. For each data point X n • we now need two slack variables €n ~ U and 
~n ;;, 0, where t:" > 0 corresponds to a point for which tn > y(xn) + f, and 1n > 0 
corresponds to a point for which tn < y(xn) - f, as illustrated in Figure 7.7. 

The condition for a target point to lie inside the E-tube is thaL YTI - ( ~ tn ~ 
Yn +c, where Yn = y(xn ). Introducing the slack variables a\lows points to lie outside 
the tube provided the slack variables are nonzero, and the corresponding conditions 
are 

tn ~ Y(x ll ) + f + ~rt 	 (7.53) 

tn ;;, y(xn ) - f - ~". 	 (7.54) 

Figure 

Exercise 7. 7 
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Figure 7.7 	 Illustration of SVM regression. showing () 
the regression curve together with the (_ Y x 
insensitive 'tube'. Also shown are exam­
ples of the slack variables cand ~. Points 
above the <:-tube have c > °and ~ = 0, 
paints below the <-tube have c = 0 and 
~ >~0, and points inside the ,-tube have 
c= c= O. 
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The error function for support vector regression can th en be written as 

(7.50) 

'y an (·illsensitive 
lte difference be­
> O. A simple 

~iated wit.h errors 

N 1 
C L (cn + (n) + 211 wl12 

n =- l 

(7.55) 

which must be minimized subject to the constraints cn ;:, 0 and ~n ;:, 0 as well as 
(7.53) and (7.54). This can be achieved by introducing Lagrange multipliers iL" ;:, 0, 
an ~ 0, J-Ln ~ 0, and /11). ~ 0 and optim izing the Lagrangian 

f', 
(7.5 1) L 

N 

CL(~n + (n) + ~ ll w l1 2 ­
It=l 

N 

L(fln~n + I1n(n) 
1t=1 

N N 

- L ante + En + Yn ­ tn ) ­ L an (f + Zn - Yn + tn )· (7.56) 
n=1 n=1 

(7.52) We now substitute for y(x) u sing~(7 .1) and then set the derivatives of the La­

grangian with respect to w , b, ~'" and ~n to zero, giving 

ration parameter, 

ntroducing slack 
)Ies~" ;:,~0 and 

I + E, and ~n > 0 
'igure 7.7. 
Yn. - ~ ~ tn ::;; 

ints to lie outside 
nding conditions 

(7.53) 

(7.54) Ererdse 7.7 

N 

fJL = 0 
fJw 

=} w =t L (a n - an)<!>(xn ) 

fJL = 0 =} 

fJb 

fJL = ° =} 

fJ~" 
D!: = 0 =} 

D~n 

n=l 

N 

L (a n - an) = 0 
n=1 

an + fin = C 

an + I1n = C. 

(7.57) 

(7.58) 

(7.59) 

(7.60) 

Using these results to eliminate the corresponding variables from the Lagrangian, we 
see that the dual problem involves maximizing 
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!Y 

1 N N 


L(a,a) -:2 L L (0." - a")(u,,, - am)k(x n, xm) 

n = l m=l 

N N 

-E L (a" + an) + L (an - an)tn (7.61) 
n = l n=l 

with respect to {an} and {a,,}, where we have introduced the kernel k(x , x ') = 

¢(x)1'¢(x'). Again, this is a constrained maximization, and to And the constraints 
we note that an ) 0 and an ) 0 are both required becau se these are Lagrange 
multipliers. Also!-'n ;? 0 and /in ;? 0 together with (7.59) and (7.60), require 
an ~ C and an ~ q, and so again we have the box constraints 

o(an ( C (7.62) 

O ~an!(C (7.63) 

together with the condition (7.58). 
Substituting (7 .57) into (7.1), we see that predictions for new inputs can be made 

uSlllg 
N 

Vex) = L (Un - an)k(x , Xn) + b (7.64) 
n-=l 

whieh is again expressed in terms of the kernel function. 
The corresponding Karush·Kuhn-Tueker (KKT) conditions, which state that at 

the solution the product of the dual variables and the constraints mu st vanish, are 
given by 

antE + /;n + y" - Ln) 0 (7.65) 

an(E + Z, -Yn +tn) 0 (7.66) 

(C - an)l;n 0 (7 .67) 

(C - an)~n o. (7.68) 

From these we can obtain several useful results. First of all, we note that a coefficient 
an can only be nonzero ir f + ~n + Un - tn = 0, which implies that the data point 
either lies on the upper boundary of the <-tube (/;" = 0) or lies above the upper 

boundary (~n > 0). Similarly, a nonzero value for an implies f. + Zn - 'Un + t T! = 0, 
and such points must lie either on or below the lower boundary of t!'e E-tube. 

Fm1hermore, the two constrainls f + t:n +Un - tn = 0 and ( + ~n - Un + tn = 0 
~re incompatible. as is easily seen by adding them together and noting that ~n and 

~n are nonnegative while t is strictly positive, and so ror every dat.a point X n • either 
a/loran (or both) must be zero. Appendix A 

The support vectors arc those data points that contribute to predictions given by 
(7.64), in other words those for which either {J.n of 0 or an of O. These are points that 
lie on the boundary of the (-tube or outside the tube. All points within the tube have 
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an = an = O. We again have a sparse solution, and the only terms that have La be 
evaluated in the predictive model (7.64) are those that involve the SUppOI1 vectors. 

The parameter /J can be found by considering a data point for which 0 < an < 
G, which from (7.67) must have ~n = O. and from (7.65) must therefore satisfy 
(+ Yn - tn = O. Using (7.1) and solving for b, we obtain 

b = tn - ( - wTcp(x n ) 
N 

= in-f- L ((],m-a"Jk(xn, xm ) (7.69) 
~1 

where we have used (7.57). We can obtain an analogous result by considering a point 
for which 0 < an. < C. In practice, it is better to average over all such estimates of 
b. 

As with the classification case, there is an alternative formulation of the SYM 
for regression in which the parameter governing complexity has a morc intuitive 
interpretation (Scholkopf e/ al.. 2000). In pal1icular, instead of fixing the width (of 
the insensitive region, we fix instead a parameter 1/ that bounds the fraction or points 
lying outside the tube. This involves maximizing 

1 N N ~ ~ 
L(a,a) - 2 L L (an - an)(am - a~)k(xn,x~) 

n = 1 m = 1 

N 

+ L (an - an)tn (7.70) 
n 1 

subject to the constraints 

0 ';: an ,;: GIN (7.7 1) 

o,;: an ,;: GIN (7.72) 
N 

L (an .- an) = 0 (7.73) 
n = l 

N 

L (an + an) ,;: ve (7.74) 
11=1 

It can be shown that there are at most l/N data points railing outside the insensitive 
tube. while at least vN data points arc sUppOI1 vectors and so lie either on the tube 
or outside it. 

The use of a support vector machine to solve a regression problem is illustrated 
using the sinusoidal data set in Figure 7.8. Here the parameters /.I and G have been 
chosen by hand. In practice, their values would typically be determined by cross­
validation. 
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Figure 7.8 	 Illustration of the //-SVM for re­

gression applied to the sinusoidal 

synthetie data set using Gaussian 
 _ _ o_ @
kernels. The predicted regression 
curve is shown by Ihe red line, and 
the ( -insensitive tube corresponds 
to Ihe shaded region. Also, the 

@ 
o @ @ 

odata points 	are shown in green, 
and those with support vectors 
are indica led by blue circles. @ 

@
- I 

o 

7.1.5 Computational learning theory 
Historically, support vector machines have largely been motivated and analysed 7 

using a theoretical framework known as compurationallearning theOlY, also some­
limes called statisticallearnil/g theory (Anlhony and Biggs, 1992; Kearns and Yazi­
rani , 1994; Yapnik, 1995; Yapnik, 1998). This has ils origins with Yaliam (1984) 
who formulated the pmbably appmximately correct, or PAC, learni ng framework. 
The goal of the PAC framework is 10 understand how large a data set needs to be in 
order to give good generalization. It also gives bounds for the compulational cost of 
learning, although we do not consider these here. 

Suppose that a data set '0 of size N is drawn from some joint distribution l'(x, t ) 
where x is the input variable and t represents the class label , and that we restrict 
attention to 'noise free ' situations in which the class labels are determined by some 
(unknown) delerministic function t = g(x). In PAC learning we say Ihal a function 
f (x ; D), drawn from a space F of such functions on the basis of the training set 
'0, has good generalization if its expected error rate is below some pre-specified 
threshold f , so that 

lEx" [1 (f (x ; D ) '" t )] < ( 	 (7.75) 

where 1(-) is the indicator function , and the expectalion is with respect to the dis­
tribution p(x , t ). The quamily on the left-hand side is a random variable, because 
il depends on the training set '0, and the PAC framework requires that (7.75) holds, 
with probability greater than 1 - Ii, for a dala set '0 drawn random ly from p(x , t ). 
Here 0 is another pre-specified parameter, and the terminology ' probably approxi­
mately correct' comes from the requirement that with hi gh probability (greater than 
1 - 0), the error rate be small (less than <). For a given choice of model space F, and 
for given parameters f. and 5, PAC learning aims to provide bounds on the minimum 
size N of data set needed to meet thi s criterion. A key quantity in PAC learning is 
Ihe Vapnik-Chervonenkis dimension, or YC dimension, which provide~ a measure of 
the complexity of a space of functions, and which allows the PAC framework to be 
extended to spaces containing an infinite number of functions. 

The bounds derived within the PAC framework are often described as worst­
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case. because they apply to any choice for the distribution p(x , t ). so long as both 
the training and the test examples are drawn (independently) from the same distribu­
tion, and for any choice forthe function f (x) so long as it belongs to F. In real-world 
applications of machine learning, we deal with distributions that have significant reg­
ularity, for example in which large regions of input space carry the same class label. 
As a consequence of the lack of any assumptions about the form of the distribution, 
the PAC bounds are very conservative, in other words they strongly over-estimate 
the size of data sets required to achieve a given generalization perfonnance. For this 
reason, PAC bounds have found few, if any, practical applications. 

One attempt to improve the tightness of the PAC bounds is the PAC-Bayesian 
framework (McAliester, 2003), which considers a di stribution over the space F of 
functions , somewhat analogous to the prior in a Bayesian treatmcnL This still con­
siders any possible choice for p(x , t ), and so although the bounds are tighter, they 
are still very conservative . 

Relevance Vector Machines 

Support vector machines have been used in a variety o f classification and regres­
sion applications. Nevertheless, they suffer from a number of limitations, several 
of which have becn highlighted already in this chapter. In palticular, the outputs of 
an SVM represent decisions rather than posterior probabilities. Also, the SYM was 
originally formulated for two classes, and the extension to f( > 2 classes is prob­
lematic. There is a complexity parameter C, or 1/ (as well as a parameter f in the case 
of regression). that must be found using a hold-oul method such as cross-validation. 
Finally, predictjons are expressed as linear combinations of kernel funclions lhat are 
centred on training data points and that are required to be positive definite. 

The relevance vector machine or RYM (Tipping, 200 I) is a Bayesian sparse ker­
nel technique for regression and classification that shares many of the characteristics 
of the SYM whilst avoiding its principal limitations. Additionally, it typicall y leads 
to much sparser models resulting in correspondingly faster performance on test data 
whilst maintaining comparable generalization error . 

•In contrast to the SYM we shall find it more convenient to introduce the regres­
sion form of the RYM first and thcn consider the extension to classification tasks. 

7.2.1 RVM for regression 
The relevance vector machine for regression is a linear model of the foml studied 

in Chapter 3 but with a modified prior that results in sparse solutions. The model 
defines a conditional distribution for a real-valued target variable t, given an input 
vector x , which takes the form 

p(tlx,w , 11) = ;V(t ly(x) , 11 1) (7.76) 

1 



