In the previous chapter, we explored a variety of learning algorithms based on non-
linear kernels. One of the significant limitations of many such algorithms is that
the kernel function k(x,,, x,,,) must be evaluated for all possible pairs x,, and x,,,
of training points, which can be computationally infeasible during training and can
lead to excessive computation times when making predictions for new data points.
In this chapter we shall look at kernel-based algorithms that have sparse solutions,
so that predictions for new inputs depend only on the kernel function evaluated at a
subset of the training data points.

We begin by looking in some detail at the support vector machine (SVM), which
became popular in some years ago for solving problems in classification, regression,
and novelty detection. An important property of support vector machines is that the
determination of the model parameters corresponds to a convex optimization prob-
lem, and so any local solution is also a global optimum. Because the discussion of
support vector machines makes extensive use of Lagrange multipliers, the reader is

325

326 7. SPARSE KERNEL MACHINES

Section 7.2

Tl

encouraged to review the key concepts covered in Appendix E. Additional infor-
mation on support vector machines can be found in Vapnik (1995), Burges (1998),
Cristianini and Shawe-Taylor (2000), Miller er al. (2001), Scholkopf and Smola
(2002), and Herbrich (2002).

The SVM is a decision machine and so does not provide posterior probabilities.
We have already discussed some of the benefits of determining probabilities in Sec-
tion 1.5.4. An alternative sparse kernel technique, known as the relevance vector
machine (RVM), is based on a Bayesian formulation and provides posterior proba-
bilistic outputs, as well as having typically much sparser solutions than the SVM.

Maximum Margin Classifiers

Section 7.1.5

We begin our discussion of support vector machines by returning to the two-class
classification problem using linear models of the form

y(x) = wle(x) +b (7.1)

where ¢(x) denotes a fixed feature-space transformation, and we have made the
bias parameter b explicit. Note that we shall shortly introduce a dual representation
expressed in terms of kernel functions, which avoids having to work explicitly in
feature space. The training data set comprises N input vectors X, ..., Xy, with
corresponding target values #,,...,ty where t, € {—1,1}, and new data points x
are classified according to the sign of y(x).

We shall assume for the moment that the training data set is linearly separable in
feature space, so that by definition there exists at least one choice of the parameters
w and b such that a function of the form (7.1) satisfies y(x,) > 0 for points having
t,, = +1 and y(x,) < 0 for points having t,, = —1, so that {,,y(x,) > 0 for all
training data points.

There may of course exist many such solutions that separate the classes exactly.
In Section 4.1.7, we described the perceptron algorithm that is guaranteed to find
a solution in a finite number of steps. The solution that it finds, however, will be
dependent on the (arbitrary) initial values chosen for w and b as well as on the
order in which the data points are presented. If there are multiple solutions all of
which classify the training data set exactly, then we should try to find the one that
will give the smallest generalization error. The support vector machine approaches
this problem through the concept of the margin, which is defined to be the smallest
distance between the decision boundary and any of the samples, as illustrated in
Figure 7.1.

In support vector machines the decision boundary is chosen to be the one for
which the margin is maximized. The maximum margin solution can be motivated us-
ing computational learning theory, also known as statistical learning theory. How-
ever, a simple insight into the origins of maximum margin has been given by Tong
and Koller (2000) who consider a framework for classification based on a hybrid of
generative and discriminative approaches. They first model the distribution over in-
put vectors x for each class using a Parzen density estimator with Gaussian kernels

7.1. Maximum Margin Classifiers 327

margin

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter o, Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit ¢ — 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as o is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/||w]|.
Furthermore, we are only interested in splutions for which all data points are cor-
rectly classified, so that £,,y(x,,) > 0 for all n. Thus the distance of a point x,, to the
decision surface is given by

t,,,y(x,,_) - tn(qub(x,,,) + b)

= (7.2)
[[wl] [[w]|

The margin is given by the perpendicular distance to the closest point x,, from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max { ||W1|| min [tn (W' p(x,) + b)] } (7.3)

where we have taken the factor 1/||w|| outside the optimization over n because w

328

Appendix E

7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w — xw and b — kb,
then the distance from any point x,, to the decision surface, given by ¢,,y(x,,)/||w||.
is unchanged. We can use this freedom to set

tn (Wip(xn) +b) =1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints -
tn (Whe(x,) +b) 2 L. n=1,...,] N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ||w|| !, which is
equivalent to minimizing ||w||%. and so we have 1o solve the optimization problem

|w||* (7.6)

o |
ar %v 1.'1')1111 5
subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints, It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ||w|| be compensated by changes to h. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers a,, = 0, with one multiplier a,, for each of the constraints in (7.5), giving
the Lagrangian function

N
1, .. N ,
L(w,b,a) = ow]* - Z] an {tn(Ww p(xn) +b) — 1} (7.7)
where a = (ay, ..., an)T. Note the minus sign in front of the Lagrange multiplier

term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b, a) with respect to w and b equal to
zero, we obtain the following two conditions

N

W = Zantnqﬁ(xn) (73)

n=1
N

0 = Za,,_.c,,,. (7.9)

n=1

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w,b, a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

N N N
~ 1 .
L(a) = Z y — § 2 Z an@mtntmk(Xn, xm) (7.10)
n=1 n=1m=1
with respect to a subject to the constraints
a, = 0, = Ly i3 N, (7.11)

N

Z anln = 0. (7.12)

n=1

Here the kernel function is defined by k(x, x") = ¢(x)" ¢(x’). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M?). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has /N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x") be positive definite, because this
ensures that the Lagrangian function L(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {a,, } and
the kernel function by substituting for w using (7.8) to give

N
y(x) = Zanl:.nk(x,xn) + b. (7.13)

n=1

330

7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

a, = 0 (7.14)

tﬂy(xu) -] ; 0 (7]5)

an {thy(xn) — 1} = 0. (7.16)

Thus for every data point, either a,, = 0 or t,y(x,) = 1. Any data point for

which a,, = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy ¢,y(x,) = 1. they correspond to points that lic on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector x,, satisfies {,,y(x,,) = 1. Using (7.13) this gives

tn (Z Et?nt”lﬂ.(xffﬁxrﬂ} + b) = l (7‘1‘7)

mesS

where & denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector x,,, a numerically more
stable solution is obtained by first multiplying through by ¢,,, making use of {2 = 1,
and then averaging these equations over all support vectors and solving for b to give

1
b= Rf_q Z (trr = Z ”-m.fm}"(x-mxm)) (7.18)

Y nes meS

where Ng is the total number of support vectors.

For later comparison with alternative models, we can express the maximum-
margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

i
> Bo(y(xn)tn — 1) + Al w|? (7.19)

n=1

where F..(z) is a function that is zero if 2 = 0 and oo otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies A > (), its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

7.1. Maximum Margin Classifiers 331

Figure 7.2 Example of synthetic data from . " - " T '
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions

So far, we have assumed that the training data points are linearly separable in the
feature space ¢(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, £, = () where

n = 1,..., N, with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by &, = 0 for data points that are on or
inside the correct margin boundary and &,, = |t,, — y(x,,)| for other points. Thus a

data point that is on the decision boundary y(x,,) = 0 will have &, = 1, and points

332

7. SPARSE KERNEL MACHINES

Figure 7.3

lllustration of the slack variables &, = 0.
Data points with circles around them are
support vectors.

with &, > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with
thy(xn) 21— &n, n=1,..., N (7.20)

in which the slack variables are constrained to satisfy &, = 0. Data points for which
&, = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < &, < 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which &, > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassi fied. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with €.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

N

1

n=1

where the parameter C' > () controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has £, > 1, it follows that
5", &n is an upper bound on the number of misclassified points. The parameter ' is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit ' — oo, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
£, = 0. The corresponding Lagrangian is given by

N N N
1 2
L(W b, a) = '2_||W”- +CZ‘EN - Z an {tny(xn) == LA gn} _z .Uvnfn (722)

n=1 n=1 n=1

7.1. Maximum Margin Classifiers 333

where {a, > 0} and {1, > 0} are Lagrange multipliers. The corresponding set of

Appendix E KKT conditions are given by
a, = 0 (7.23)
tay(%n) —1+& = 0 (7.24)
an (tny(Xn) —14+6&) = 0 (7.25)
pn 2 0 (7.26)
&n =2 0 (7.27)
nbn = 0 (7.28)
wheren=1,...,N.
We now optimize out w, b, and {&,,} making use of the definition (7.1) of y(x)
to give
N

L

gw =0 = w= Z_;antn¢(xn) (729)
N

oL

% =0 = Zantn =0 (730)
n=1
dL
=0 = N.ZC* . 731

At @ H (7.31)

Using these results to eliminate w, b, and {&,, } from the Lagrangian, we obtain the
dual Lagrangian in the form

N N PR
L(a) = Qp — = arn.am.tn.tmk X, X (732)
(a) ; s X;: mgl s %)
which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that a,, = 0 is required because
these are Lagrange multipliers. Furthermore, (7.31) together with u,, = 0 implies
a, < C. We therefore have to minimize (7.32) with respect to the dual variables
{a, } subject to

0<a,<C (7.33)
N
> ant, =0 (7.34)
n=1
forn =1,..., N, where (7.33) are known as box constraints. This again represents

a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have a, = 0, in which case they do not contribute to the predictive

334

7. SPARSE KERNEL MACHINES

model (7.13). The remaining data points constitute the support vectors. These have
a,, > 0 and hence from (7.25) must satisfy

f'ny(xn) =1—E&n. (7.35)

If a,, < C, then (7.31) implies that y,, > 0, which from (7.28) requires &,, = () and
hence such points lie on the margin. Points with a,, = C can lie inside the margin
and can either be correctly classified if £, < 1 or misclassified if £,, > 1.

To determine the parameter b in (7.1), we note that those support vectors for
which 0 < a,, < C have §,, = 0 so that {,,5(x,,) = 1 and hence will satisfy

bn (Z “mtmk(xmxm) = b) = 1. (7.36)

meS

Again, a numerically stable solution is obtained by averaging to give

b= ﬁ > (f = amtmk(xn,xm)) (7.37)

neM meS

where M denotes the set of indices of data points having 0 < a,, < C.
An alternative, equivalent formulation of the support vector machine, known as
the #-SVM, has been proposed by Scholkopf ez al. (2000). This involves maximizing

- N
L(a) = _E Z anamtnt'rnk(xng xm.) (738)
n=1 m=1
subject to the constraints
0<a, <1/N (7.39)
N
Zantn =0 (7.40)
n=1
N
Y anzw (7.41)
n=1

This approach has the advantage that the parameter v, which replaces C, can be
interpreted as both an upper bound on the fraction of margin errors (points for which
&n > 0 and hence which lie on the wrong side of the margin boundary and which may
or may not be misclassified) and a lower bound on the fraction of support vectors. An
example of the »-SVM applied to a synthetic data set is shown in Figure 7.4. Here
Gaussian kernels of the form exp (—v||x — x’||*) have been used, with v = 0.45.
Although predictions for new inputs are made using only the support vectors,
the training phase (i.e., the determination of the parameters a and b) makes use of
the whole data set, and so it is important to have efficient algorithms for solving

Figure 7.4

7.1. Maximum Margin Classifiers 335

lllustration of the »-SVM applied .
to a nonseparable data set in two ®
dimensions. The support vectors |
are indicated by circles. -

0r

=2

the quadratic programming problem. We first note that the objective function L(a)
given by (7.10) or (7.32) is quadratic and so any local optimum will also be a global
optimum provided the constraints define a convex region (which they do as a conse-
quence of being linear). Direct solution of the quadratic programming problem us-
ing traditional techniques is often infeasible due to the demanding computation and
memory requirements, and so more practical approaches need to be found. The tech-
nique of chunking (Vapnik, 1982) exploits the fact that the value of the Lagrangian
is unchanged if we remove the rows and columns of the kernel matrix corresponding
to Lagrange multipliers that have value zero. This allows the full quadratic pro-
gramming problem to be broken down into a series of smaller ones, whose goal is
eventually to identify all of the nonzero Lagrange multipliers and discard the others.
Chunking can be implemented using protected conjugate gradients (Burges, 1998).
Although chunking reduces the size of the matrix in the quadratic function from the
number of data points squared to approximately the number of nonzero Lagrange
multipliers squared, even this may be too big to fit in memory for large-scale appli-
cations. Decomposition methods (Osuna et al., 1996) also solve a series of smaller
quadratic programming problems but are designed so that each of these is of a fixed
size, and so the technique can be applied to arbitrarily large data sets. However, it
still involves numerical solution of quadratic programming subproblems and these
can be problematic and expensive. One of the most popular approaches to training
support vector machines is called sequential minimal optimization, or SMO (Platt,
1999). It takes the concept of chunking to the extreme limit and considers just two
Lagrange multipliers at a time. In this case, the subproblem can be solved analyti-
cally, thereby avoiding numerical quadratic programming altogether. Heuristics are
given for choosing the pair of Lagrange multipliers to be considered at each step.
In practice, SMO is found to have a scaling with the number of data points that is
somewhere between linear and quadratic depending on the particular application.
We have seen that kernel functions correspond to inner products in feature spaces
that can have high, or even infinite, dimensionality. By working directly in terms of
the kernel function, without introducing the feature space explicitly, it might there-
fore seem that support vector machines somehow manage to avoid the curse of di-

336 7. SPARSE KERNEL MACHINES

Section 1.4

Section 4.3.2

mensionality. This is not the case, however, because there are constraints amongst
the feature values that restrict the effective dimensionality of feature space. To see
this consider a simple second-order polynomial kernel that we can expand in terms
of its components

k(x,z) = (1 +xTz)2 = (14 z121 + Ta29)?

14 2x2) + 23920 + .I“]sz + 221029 + ’L’% z.g

- (1? \/E:Els \/‘21’2’ "L‘?i \/53:33:21"1"%)(17 \@21: \&221 2121 \/531221 :"'.22)’I1
P(x)"¢(2). (7.42)

This kernel function therefore represents an inner product in a feature space having
six dimensions, in which the mapping from input space to feature space is described
by the vector function ¢(x). However, the coefficients weighting these different
features are constrained to have specific forms. Thus any set of points in the original
two-dimensional space x would be constrained to lie exactly on a two-dimensional
nonlinear manifold embedded in the six-dimensional feature space.

We have already highlighted the fact that the support vector machine does not
provide probabilistic outputs but instead makes classification decisions for new in-
put vectors. Veropoulos et al. (1999) discuss modifications to the SVM to allow
the trade-off between false positive and false negative errors to be controlled. How-
ever, if we wish to use the SVM as a module in a larger probabilistic system, then
probabilistic predictions of the class label ¢ for new inputs x are required.

To address this issue, Platt (2000) has proposed fitting a logistic sigmoid to the
outputs of a previously trained support vector machine. Specifically, the required
conditional probability is assumed to be of the form

1

p(t = 1|x) = o (Ay(x) + B) (7.43)

where y(x) is defined by (7.1). Values for the parameters A and B are found by
minimizing the cross-entropy error function defined by a training set consisting of
pairs of values y(x,,) and t,,. The data used to fit the sigmoid needs to be independent
of that used to train the original SVM in order to avoid severe over-fitting. This two-
stage approach is equivalent to assuming that the output y(x) of the support vector
machine represents the log-odds of x belonging to class ¢ = 1. Because the SVM
training procedure is not specifically intended to encourage this, the SVM can give
a poor approximation to the posterior probabilities (Tipping, 2001).

7.1.2 Relation to logistic regression

As with the separable case, we can re-cast the SVM for nonseparable distri-
butions in terms of the minimization of a regularized error function. This will also
allow us to highlight similarities, and differences, compared to the logistic regression
model.

We have seen that for data points that are on the correct side of the margin
boundary, and which therefore satisfy #,t, = 1, we have &, = 0, and for the

7.1. Maximum Margin Classifiers 337

Figure 7.5 Plot of the ‘hinge’ error function used 4 E(z)

Exercise 7.6

in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/In(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.

—2 -1 0 1 2

remaining points we have &, = 1 — y,t,. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

N
> Esy(yntn) + Awlf? (7.44)

n=1
where A = (2C') 7!, and Fsy(-) is the hinge error function defined by
ESV(Untn) — “- . yntn]+ (7.45)

where [-|, denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.

When we considered the logistic regression model in Section 4.3.2, we found it
convenient to work with target variable ¢ € {0, 1}. For comparison with the support
vector machine, we first reformulate maximum likelihood logistic regression using
the target variable ¢ € {—1, 1}. To do this, we note that p(t = 1|y) = o(y) where
y(x) is given by (7.1), and o (y) is the logistic sigmoid function defined by (4.59). It
follows that p(t = —1|y) = 1 — a(y) = a(—y). where we have used the properties
of the logistic sigmoid function, and so we can write

p(tly) = o(yt). (7.46)

From this we can construct an error function by taking the negative logarithm of the
likelihood function that, with a quadratic regularizer, takes the form

N
> Evn(yntn) + A|wl*. (7.47)

n=I1

where
Err(yt) = In (1 + exp(—yt)). (7.48)

338

7. SPARSE KERNEL MACHINES

For comparison with other error functions, we can divide by In(2) so that the error
function passes through the point (0, 1). This rescaled error function is also plotted
in Figure 7.5 and we see that it has a similar form to the support vector error function.
The key difference is that the flat region in Esy (yt) leads to sparse solutions.

Both the logistic error and the hinge loss can be viewed as continuous approx-
imations to the misclassification error. Another continuous error function that has
sometimes been used to solve classification problems is the squared error, which
is again plotted in Figure 7.5. It has the property, however, of placing increasing
emphasis on data points that are correctly classified but that are a long way from
the decision boundary on the correct side. Such points will be strongly weighted at
the expense of misclassified points, and so if the objective is to minimize the mis-
classification rate, then a monotonically decreasing error function would be a better
choice.

7.1.3 Multiclass SVMs

The support vector machine is fundamentally a two-class classifier. In practice,
however, we often have to tackle problems involving K > 2 classes. Various meth-
ods have therefore been proposed for combining multiple two-class SVMs in order
to build a multiclass classifier.

One commonly used approach (Vapnik, 1998) is to construct /& separate SVMs,
in which the k"' model y(x) is trained using the data from class Cj, as the positive
examples and the data from the remaining K — 1 classes as the negative examples.
This is known as the one-versus-the-rest approach. However, in Figure 4.2 we saw
that using the decisions of the individual classifiers can lead to inconsistent results
in which an input is assigned to multiple classes simultaneously. This problem is
sometimes addressed by making predictions for new inputs x using

y(x) = max Yr(x). (7.49)

Unfortunately, this heuristic approach suffers from the problem that the different
classifiers were trained on different tasks, and there is no guarantee that the real-
valued quantities y(x) for different classifiers will have appropriate scales.

Another problem with the one-versus-the-rest approach is that the training sets
are imbalanced. For instance, if we have ten classes cach with equal numbers of
training data points, then the individual classifiers are trained on data sets comprising
90% negative examples and only 10% positive examples, and the symmetry of the
original problem is lost. A variant of the one-versus-the-rest scheme was proposed
by Lee ef al. (2001) who modify the target values so that the positive class has target
+1 and the negative class has target —1 /(K — 1).

Weston and Watkins (1999) define a single objective function for training all
K SVMs simultaneously, based on maximizing the margin from each to remaining
classes. However, this can result in much slower training because, instead of solving
K separate optimization problems each over N data points with an overall cost of
O(K N?), a single optimization problem of size (K — 1)/N must be solved giving an
overall cost of O(K?N?).

Section 3.1.4

7.1. Maximum Margin Classifiers 339

Another approach is to train K (K — 1) /2 different 2-class SVMs on all possible
pairs of classes, and then to classify test points according to which class has the high-
est number of ‘voles’, an approach that is sometimes called one-versus-one. Again,
we saw in Figure 4.2 that this can lead to ambiguities in the resulting classification.
Also, for large K this approach requires significantly more training time than the
one-versus-the-rest approach. Similarly, to evaluate test points, significantly more
computation is required.

The latter problem can be alleviated by organizing the pairwise classifiers into
a directed acyclic graph (not to be confused with a probabilistic graphical model)
leading to the DAGSVM (Platt et al., 2000). For K classes, the DAGSVM has a total
of K(K — 1)/2 classifiers, and to classify a new test point only K — 1 pairwise
classifiers need to be evaluated, with the particular classifiers used depending on
which path through the graph is traversed.

A different approach to multiclass classification, based on error-correcting out-
put codes, was developed by Dietterich and Bakini (1995) and applied to support
vector machines by Allwein et al. (2000). This can be viewed as a generalization of
the voting scheme of the one-versus-one approach in which more general partitions
of the classes are used to train the individual classifiers. The K classes themselves
are represented as particular sets of responses from the two-class classifiers chosen,
and together with a suitable decoding scheme, this gives robustness to errors and to
ambiguity in the outputs of the individual classifiers. Although the application of
SVMs to multiclass classification problems remains an open issue, in practice the
one-versus-the-rest approach is the most widely used in spite of its ad-hoc formula-
tion and its practical limitations.

There are also single-class support vector machines, which solve an unsuper-
vised learning problem related to probability density estimation. Instead of mod-
elling the density of data, however, these methods aim to find a smooth boundary
enclosing a region of high density. The boundary is chosen to represent a quantile of
the density, that is, the probability that a data point drawn from the distribution will
land inside that region is given by a fixed number between 0 and 1 that is specified in
advance. This is a more restricted problem than estimating the full density but may
be sufficient in specific applications. Two approaches to this problem using support
vector machines have been proposed. The.algorithm of Scholkopf et al. (2001) tries
to find a hyperplane that separates all but a fixed fraction 1 of the training data from
the origin while at the same time maximizing the distance (margin) of the hyperplane
from the origin, while Tax and Duin (1999) look for the smallest sphere in feature
space that contains all but a fraction v of the data points. For kernels k(x,x’) that
are functions only of x — x/, the two algorithms are equivalent.

7.1.4 SVMs for regression

We now extend support vector machines to regression problems while at the
same time preserving the property of sparseness. In simple linear regression, we

340

Figure 7.6 Plot of an e-insensitive error function (in 4

7. SPARSE KERNEL MACHINES

red) in which the error increases lin-
early with distance beyond the insen-
sitive region. Also shown for compar-
ison is the quadratic error function (in
green).

minimize a regularized error function given by

1o A
52 (v —ta}® + ZlIwl (7.50)

n=1

To obtain sparse solutions, the quadratic error function is replaced by an e-insensitive
error function (Vapnik, 1995), which gives zero error if the absolute difference be-
tween the prediction y(x) and the target ¢ is less than € where ¢ > 0. A simple
example of an e-insensitive error function, having a linear cost associated with errors
outside the insensitive region, is given by

)] o, if [y(x) —t| < e
E(y(x) 1) _{ (%) — f] — €, otherwise (7.51)

and is illustrated in Figure 7.6.
We therefore minimize a regularized error function given by

N
1, .
C Y Ee(y(xn) — tu) + 5llw]? (7.52)

n=1

where y(x) is given by (7.1). By convention the (inverse) regularization parameter,
denoted (', appears in front of the error term.

As before, we can re-express the optimization problem by introducing slack
’\iariables. For each data point x,,, we now need two slack variables £, > 0 and
£, 2 0, where &, > 0 corresponds to a point for which ¢,, > y(x,,) + ¢, and En >0
corresponds to a point for which ¢, < y(x,,) — €, as illustrated in Figure 7.7.

The condition for a target point to lie inside the e-tube is that y, — ¢ < ¢, <
yn +¢, where y,, = y(x,,). Introducing the slack variables allows points to lie outside
the tube provided the slack variables are nonzero, and the corresponding conditions
are

ln
tn

Y(xn)+ €+ &n (7.53)
§(%) — €— En: (7.54)

WA

7.1. Maximum Margin Classifiers 341

Figure 7.7 lllustration of SVM regression, showing (:.:)“
the regression curve together with the - 7 yte
insensitive 'tube’. Also shown are exam-
ples of the slack variables ¢ and f.APoints
above the c¢-tube have £ = 0 and £ = (),
Eoints below the e-tube have £ = 0 and
§ > 0, and points inside the ¢-tube have

E=E=0

The error function for support vector regression can then be written as

N

O (n +E) + 5wl (7.55)

=1

which must be minimized subject to the constraints &, = 0 and :‘;:,, = () as well as
(7.53) and (7.54). This can be achieved by introducing Lagrange multipliers a,, = 0,
a, 2 0, pu, 2 0, and i, > 0 and optimizing the Lagrangian

N

N
- 1 e
L = CZ(&’ + &) + 5““””2 = Z(.U»n'fn A o f-tn'fn)

n=1 n=1

N

N
= Za-n(f +éntyn— tn) = Zan(f +&n —Yn+1n). (7.56)

n=1 n=1

We now substitute for y(x) using (7.1) and then set the derivatives of the La-
grangian with respect to w, b, &,,, and &,, to zero, giving

oL =
Fe =0 = w= Z(an —) (%) (7.57)
N

aL 5

5 =0 = ;(an —Gn) =0 (7.58)
OL 0 = atp=0 (7.59)
a¢,,

BIA ~ ~~

— =0 = a,+u,=0C. (7.60)
06,

Using these results to eliminate the corresponding variables from the Lagrangian, we
Exercise 7.7 see that the dual problem involves maximizing

342

7. SPARSE KERNEL MACHINES

N N
~ . 1 . .
L(a,a) = —5 Z Z Ay — U)@ — U) k(X s X))
n=1m=l1
N N
—€ Z(G“ Tt a‘”) T Z(”’n - ﬁn.)tn (7()1)
n=1 n=1

with respect to {a, } and {a, }, where we have introduced the kernel k(x,x’) =
¢ (x)T¢p(x'). Again, this is a constrained maximization, and to find the constraints
we note that a,, = 0 and a,, > 0 are both required because these are Lagrange
multipliers. Also p, = 0 and f,, = 0 together with (7.59) and (7.60), require
a, < Cand a, < C, and so again we have the box constraints

a, < C (./:162)
i S C (7.63)

together with the condition (7.58).
Substituting (7.57) into (7.1), we see that predictions for new inputs can be made
using
N
y(x) = Z(u.,,, —) k(x.%x,) + b (7.64)

n=1

which is again expressed in terms of the kernel function.

The corresponding Karush-Kuhn-Tucker (KKT) conditions, which state that at
the solution the product of the dual variables and the constraints must vanish, are
given by

an(€+&n +yn —ta) = 0 (7.65)
Gnle+En—yn+1tn) = 0 (7.66)
(C—an)t, = 0 (7.67)
(C—@n)én = 0. (7.68)

From these we can obtain several useful results. First of all, we note that a coefficient
ay, can only be nonzero if € + &, + y,, — t,, = 0, which implies that the data point
either lies on the upper boundary of the e-tube (£, = 0) or lies above the upper
boundary (£, > 0). Similarly, a nonzero value for @,, implies ¢ —E-E,, —Yp +1n =0,
and such points must lie either on or below the lower boundary of the e-tube.

Furthermore, the two constraints e +&,, +y,, —t, = O and ¢ + En —Yn+t, =0
are incompatible, as is easily seen by adding them together and noting that &,, and
E,,, are nonnegative while e is strictly positive, and so for every data point x,,, either
a,, or a,, (or both) must be zero.

The support vectors are those data points that contribute to predictions given by
(7.64), in other words those for which either a,, # 0 or a,, # 0. These are points that
lie on the boundary of the c-tube or outside the tube. All points within the tube have

Appendix A

7.1. Maximum Margin Classifiers 343

a, = a, = 0. We again have a sparse solution, and the only terms that have to be
evaluated in the predictive model (7.64) are those that involve the support vectors,

The parameter b can be found by considering a data point for which 0 < a,, <
', which from (7.67) must have &, = 0, and from (7.65) must therefore satisfy
€+ yn — t, = 0. Using (7.1) and solving for b, we obtain

b = tp—e— WTQ’)(XH)
N
= !'n — €= Z(a‘m - au'ﬁ)k(xn ? Xm) (7-69)
m=1

where we have used (7.57). We can obtain an analogous result by considering a point
for which 0 < @,, < C'. In practice, it is better to average over all such estimates of
b.

As with the classification case, there is an alternative tormulation of the SVM
for regression in which the parameter governing complexity has a more intuitive
interpretation (Scholkopf er al., 2000). In particular, instead of fixing the width ¢ of
the insensitive region, we fix instead a parameter » that bounds the fraction of points
lying outside the tube. This involves maximizing

N N
= o 1 o ~
L(a, a) = —5 Z Z (@n — a-n)(am - am)k(xﬂ- Xm)
n=1 m=1
,’\.’
+ Z(an o aﬂ)t?? (770)
n=1

subject to the constraints

0<a, £C/N (7.71)
0<au, <C/N (7.72)
N
D (an —@n) =0 (7.73)
n=1
N
) (@n +8a) SVC. (7.74)

n=1

It can be shown that there are at most ©#/V data points falling outside the insensitive
tube, while at least ¥ N data points are support vectors and so lie either on the tube
or outside it.

The use of a support vector machine to solve a regression problem is illustrated
using the sinusoidal data set in Figure 7.8. Here the parameters v and C' have been
chosen by hand. In practice, their values would typically be determined by cross-
validation.

344 7. SPARSE KERNEL MACHINES

Figure 7.8

lllustration of the »-SVM for re-
gression applied to the sinusoidal
synthetic data set using Gaussian
kernels. The predicted regression
curve is shown by the red line, and
the e-insensitive tube corresponds
to the shaded region. Also, the
data points are shown in green,
and those with support vectors
are indicated by blue circles.

0 . 1

7.1.5 Computational learning theory

Historically, support vector machines have largely been motivated and analysed
using a theoretical framework known as computarional learning theory, also some-
times called statistical learning theory (Anthony and Biggs, 1992; Kearns and Vazi-
rani, 1994; Vapnik, 1995; Vapnik, 1998). This has its origins with Valiant (1984)
who formulated the probably approximately correct, or PAC, learning framework.
The goal of the PAC framework is to understand how large a data set needs to be in
order to give good generalization. It also gives bounds for the computational cost of
learning, although we do not consider these here.

Suppose that a data set D of size N is drawn from some joint distribution p(x, t)
where x is the input variable and t represents the class label, and that we restrict
attention to ‘noise free’ situations in which the class labels are determined by some
(unknown) deterministic function t = g(x). In PAC learning we say that a function
f(x: D), drawn from a space F of such functions on the basis of the training set
D, has good generalization if its expected error rate is below some pre-specified
threshold ¢, so that

Ex [(f(x;D) #t)] <€ (7.75)

where /(-) is the indicator function, and the expectation is with respect to the dis-
tribution p(x,t). The quantity on the left-hand side is a random variable, because
it depends on the training set D, and the PAC framework requires that (7.75) holds,
with probability greater than 1 — 4, for a data set D drawn randomly from p(x, t).
Here 4 is another pre-specified parameter, and the terminology ‘probably approxi-
mately correct” comes from the requirement that with high probability (greater than
1 —), the error rate be small (less than). For a given choice of model space F, and
for given parameters ¢ and 6, PAC learning aims to provide bounds on the minimum
size N of data set needed to meet this criterion. A key quantity in PAC learning is
the Vapnik-Chervonenkis dimension, or VC dimension, which provides a measure of
the complexity of a space of functions, and which allows the PAC framework to be
extended to spaces containing an infinite number of functions.

The bounds derived within the PAC framework are often described as worst-

Tuls

7.2. Relevance Vector Machines 345

case, because they apply to any choice for the distribution p(x, t), so long as both
the training and the test examples are drawn (independently) from the same distribu-
tion, and for any choice for the function f(x) so long as it belongs to . In real-world
applications of machine learning, we deal with distributions that have significant reg-
ularity, for example in which large regions of input space carry the same class label.
As a consequence of the lack of any assumptions about the form of the distribution,
the PAC bounds are very conservative, in other words they strongly over-estimate
the size of data sets required to achieve a given generalization performance. For this
reason, PAC bounds have found few, if any, practical applications.

One attempt to improve the tightness of the PAC bounds is the PAC-Bayesian
framework (McAllester, 2003), which considers a distribution over the space F of
functions, somewhat analogous to the prior in a Bayesian treatment. This still con-
siders any possible choice for p(x,t), and so although the bounds are tighter, they
are still very conservative.

Relevance Vector Machines

Support vector machines have been used in a variety of classification and regres-
sion applications. Nevertheless, they suffer from a number of limitations, several
of which have been highlighted already in this chapter. In particular, the outputs of
an SVM represent decisions rather than posterior probabilities. Also, the SVM was
originally formulated for two classes, and the extension to K > 2 classes is prob-
lematic. There is a complexity parameter C', or v (as well as a parameter ¢ in the case
of regression), that must be found using a hold-out method such as cross-validation.
Finally, predictions are expressed as linear combinations of kernel functions that are
centred on training data points and that are required to be positive definite.

The relevance vector machine or RVM (Tipping, 2001) is a Bayesian sparse ker-
nel technique for regression and classification that shares many of the characteristics
of the SVM whilst avoiding its principal limitations. Additionally, it typically leads
to much sparser models resulting in correspondingly faster performance on test data
whilst maintaining comparable generalization error.

In contrast to the SVM we shall find it more convenient to introduce the regres-
sion form of the RVM first and then consider the extension to classification tasks.

7.2.1 RVM for regression

The relevance vector machine for regression is a linear model of the form studied
in Chapter 3 but with a modified prior that results in sparse solutions. The model
defines a conditional distribution for a real-valued target variable {, given an input
vector x, which takes the form

p(tlx, w,8) = N(tly(x),37") (7.76)

