We can readily extend the linear-Gaussian graphical model to the case in which the nodes of the graph represent multivariate Gaussian variables. In this case, we can write the conditional distribution for node i in the form

$$p(\mathbf{x}_i | \mathrm{pa}_i) = \mathcal{N}\left(\mathbf{x}_i \left| \sum_{j \in \mathrm{pa}_i} \mathbf{W}_{ij} \mathbf{x}_j + \mathbf{b}_i, \mathbf{\Sigma}_i \right. \right)$$
(8.19)

where now \mathbf{W}_{ij} is a matrix (which is nonsquare if \mathbf{x}_i and \mathbf{x}_j have different dimensionalities). Again it is easy to verify that the joint distribution over all variables is Gaussian.

Note that we have already encountered a specific example of the linear-Gaussian relationship when we saw that the conjugate prior for the mean μ of a Gaussian variable x is itself a Gaussian distribution over μ . The joint distribution over x and μ is therefore Gaussian. This corresponds to a simple two-node graph in which the node representing μ is the parent of the node representing x. The mean of the distribution over μ is a parameter controlling a prior, and so it can be viewed as a hyperparameter. Because the value of this hyperparameter may itself be unknown, we can again treat it from a Bayesian perspective by introducing a prior over the hyperparameter, sometimes called a *hyperprior*, which is again given by a Gaussian distribution. This type of construction can be extended in principle to any level and is an illustration of a *hierarchical Bayesian model*, of which we shall encounter further examples in later chapters.

8.2. Conditional Independence

An important concept for probability distributions over multiple variables is that of *conditional independence* (Dawid, 1980). Consider three variables a, b, and c, and suppose that the conditional distribution of a, given b and c, is such that it does not depend on the value of b, so that

$$p(a|b,c) = p(a|c).$$
 (8.20)

We say that a is conditionally independent of b given c. This can be expressed in a slightly different way if we consider the joint distribution of a and b conditioned on c, which we can write in the form

$$p(a,b|c) = p(a|b,c)p(b|c)$$

= $p(a|c)p(b|c).$ (8.21)

where we have used the product rule of probability together with (8.20). Thus we see that, conditioned on c, the joint distribution of a and b factorizes into the product of the marginal distribution of a and the marginal distribution of b (again both conditioned on c). This says that the variables a and b are statistically independent, given c. Note that our definition of conditional independence will require that (8.20),

Section 2.3.6

or equivalently (8.21), must hold for every possible value of c, and not just for some values. We shall sometimes use a shorthand notation for conditional independence (Dawid, 1979) in which

$$a \perp\!\!\!\perp b \mid c$$
 (8.22)

denotes that a is conditionally independent of b given c and is equivalent to (8.20).

Conditional independence properties play an important role in using probabilistic models for pattern recognition by simplifying both the structure of a model and the computations needed to perform inference and learning under that model. We shall see examples of this shortly.

If we are given an expression for the joint distribution over a set of variables in terms of a product of conditional distributions (i.e., the mathematical representation underlying a directed graph), then we could in principle test whether any potential conditional independence property holds by repeated application of the sum and product rules of probability. In practice, such an approach would be very time consuming. An important and elegant feature of graphical models is that conditional independence properties of the joint distribution can be read directly from the graph without having to perform any analytical manipulations. The general framework for achieving this is called *d-separation*, where the 'd' stands for 'directed' (Pearl, 1988). Here we shall motivate the concept of d-separation and give a general statement of the d-separation criterion. A formal proof can be found in Lauritzen (1996).

8.2.1 Three example graphs

We begin our discussion of the conditional independence properties of directed graphs by considering three simple examples each involving graphs having just three nodes. Together, these will motivate and illustrate the key concepts of d-separation. The first of the three examples is shown in Figure 8.15, and the joint distribution corresponding to this graph is easily written down using the general result (8.5) to give

$$p(a, b, c) = p(a|c)p(b|c)p(c).$$
 (8.23)

If none of the variables are observed, then we can investigate whether a and b are independent by marginalizing both sides of (8.23) with respect to c to give

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c).$$
(8.24)

In general, this does not factorize into the product p(a)p(b), and so

$$a \not\perp b \mid \emptyset \tag{8.25}$$

b

where \emptyset denotes the empty set, and the symbol $\not\perp$ means that the conditional independence property does not hold in general. Of course, it may hold for a particular distribution by virtue of the specific numerical values associated with the various conditional probabilities, but it does not follow in general from the structure of the graph.

Now suppose we condition on the variable c, as represented by the graph of Figure 8.16. From (8.23), we can easily write down the conditional distribution of a and b, given c, in the form

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$
$$= p(a|c)p(b|c)$$

and so we obtain the conditional independence property

$$a \perp\!\!\!\perp b \mid c.$$

We can provide a simple graphical interpretation of this result by considering the path from node a to node b via c. The node c is said to be *tail-to-tail* with respect to this path because the node is connected to the tails of the two arrows, and the presence of such a path connecting nodes a and b causes these nodes to be dependent. However, when we condition on node c, as in Figure 8.16, the conditioned node 'blocks' the path from a to b and causes a and b to become (conditionally) independent.

We can similarly consider the graph shown in Figure 8.17. The joint distribution corresponding to this graph is again obtained from our general formula (8.5) to give

$$p(a, b, c) = p(a)p(c|a)p(b|c).$$
 (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to see if a and b are independent by marginalizing over c to give

$$p(a,b) = p(a) \sum_{c} p(c|a)p(b|c) = p(a)p(b|a).$$

b

© Christopher M. Bishop (2002–2006). Springer, 2006. First printing. Further information available at http://research.microsoft.com/~cmbishop/PRML

which in general does not factorize into p(a)p(b), and so

$$a \not\perp b \mid \emptyset$$
 (8.27)

as before.

Now suppose we condition on node c, as shown in Figure 8.18. Using Bayes' theorem, together with (8.26), we obtain

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$
$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$
$$= p(a|c)p(b|c)$$

and so again we obtain the conditional independence property

$$a \perp\!\!\!\perp b \mid c$$

As before, we can interpret these results graphically. The node c is said to be *head-to-tail* with respect to the path from node a to node b. Such a path connects nodes a and b and renders them dependent. If we now observe c, as in Figure 8.18, then this observation 'blocks' the path from a to b and so we obtain the conditional independence property $a \perp b \mid c$.

Finally, we consider the third of our 3-node examples, shown by the graph in Figure 8.19. As we shall see, this has a more subtle behaviour than the two previous graphs.

The joint distribution can again be written down using our general result (8.5) to give

$$p(a, b, c) = p(a)p(b)p(c|a, b).$$
 (8.28)

Consider first the case where none of the variables are observed. Marginalizing both sides of (8.28) over c we obtain

$$p(a,b) = p(a)p(b)$$

Figure 8.19 The last of our three examples of 3-node graphs used to *a* explore conditional independence properties in graphical models. This graph has rather different properties from the two previous examples.

 Figure 8.20
 As in Figure 8.19 but conditioning on the value of node a a

 c. In this graph, the act of conditioning induces a dependence between a and b.
 a

and so a and b are independent with no variables observed, in contrast to the two previous examples. We can write this result as

$$a \perp\!\!\!\perp b \mid \emptyset. \tag{8.29}$$

Now suppose we condition on c, as indicated in Figure 8.20. The conditional distribution of a and b is then given by

$$p(a, b|c) = \frac{p(a, b, c)}{p(c)}$$
$$= \frac{p(a)p(b)p(c|a, b)}{p(c)}$$

which in general does not factorize into the product p(a)p(b), and so

 $a \not\!\!\perp b \mid c.$

Thus our third example has the opposite behaviour from the first two. Graphically, we say that node c is *head-to-head* with respect to the path from a to b because it connects to the heads of the two arrows. When node c is unobserved, it 'blocks' the path, and the variables a and b are independent. However, conditioning on c 'unblocks' the path and renders a and b dependent.

There is one more subtlety associated with this third example that we need to consider. First we introduce some more terminology. We say that node y is a *descendant* of node x if there is a path from x to y in which each step of the path follows the directions of the arrows. Then it can be shown that a head-to-head path will become unblocked if either the node, *or any of its descendants*, is observed.

In summary, a tail-to-tail node or a head-to-tail node leaves a path unblocked unless it is observed in which case it blocks the path. By contrast, a head-to-head node blocks a path if it is unobserved, but once the node, and/or at least one of its descendants, is observed the path becomes unblocked.

It is worth spending a moment to understand further the unusual behaviour of the graph of Figure 8.20. Consider a particular instance of such a graph corresponding to a problem with three binary random variables relating to the fuel system on a car, as shown in Figure 8.21. The variables are called B, representing the state of a battery that is either charged (B = 1) or flat (B = 0), F representing the state of the fuel tank that is either full of fuel (F = 1) or empty (F = 0), and G, which is the state of an electric fuel gauge and which indicates either full (G = 1) or empty

© Christopher M. Bishop (2002–2006). Springer, 2006. First printing. Further information available at http://research.microsoft.com/~cmbishop/PRML

Exercise 8.10

8.2. Conditional Independence 377

Figure 8.21 An example of a 3-node graph used to illustrate the phenomenon of 'explaining away'. The three nodes represent the state of the battery (B), the state of the fuel tank (F) and the reading on the electric fuel gauge (G). See the text for details.

(G = 0). The battery is either charged or flat, and independently the fuel tank is either full or empty, with prior probabilities

$$p(B = 1) = 0.9$$

 $p(F = 1) = 0.9.$

Given the state of the fuel tank and the battery, the fuel gauge reads full with probabilities given by

$$p(G = 1|B = 1, F = 1) = 0.8$$

$$p(G = 1|B = 1, F = 0) = 0.2$$

$$p(G = 1|B = 0, F = 1) = 0.2$$

$$p(G = 1|B = 0, F = 0) = 0.1$$

so this is a rather unreliable fuel gauge! All remaining probabilities are determined by the requirement that probabilities sum to one, and so we have a complete specification of the probabilistic model.

Before we observe any data, the prior probability of the fuel tank being empty is p(F = 0) = 0.1. Now suppose that we observe the fuel gauge and discover that it reads empty, i.e., G = 0, corresponding to the middle graph in Figure 8.21. We can use Bayes' theorem to evaluate the posterior probability of the fuel tank being empty. First we evaluate the denominator for Bayes' theorem given by

$$p(G=0) = \sum_{B \in \{0,1\}} \sum_{F \in \{0,1\}} p(G=0|B,F)p(B)p(F) = 0.315$$
(8.30)

and similarly we evaluate

$$p(G=0|F=0) = \sum_{B \in \{0,1\}} p(G=0|B,F=0)p(B) = 0.81$$
(8.31)

and using these results we have

$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)} \simeq 0.257$$
(8.32)

and so p(F = 0|G = 0) > p(F = 0). Thus observing that the gauge reads empty makes it more likely that the tank is indeed empty, as we would intuitively expect. Next suppose that we also check the state of the battery and find that it is flat, i.e., B = 0. We have now observed the states of both the fuel gauge and the battery, as shown by the right-hand graph in Figure 8.21. The posterior probability that the fuel tank is empty given the observations of both the fuel gauge and the battery state is then given by

$$p(F=0|G=0, B=0) = \frac{p(G=0|B=0, F=0)p(F=0)}{\sum_{F \in \{0,1\}} p(G=0|B=0, F)p(F)} \simeq 0.111 \quad (8.33)$$

where the prior probability p(B = 0) has cancelled between numerator and denominator. Thus the probability that the tank is empty has *decreased* (from 0.257 to 0.111) as a result of the observation of the state of the battery. This accords with our intuition that finding out that the battery is flat *explains away* the observation that the fuel gauge reads empty. We see that the state of the fuel tank and that of the battery have indeed become dependent on each other as a result of observing the reading on the fuel gauge. In fact, this would also be the case if, instead of observing the fuel gauge directly, we observed the state of some descendant of G. Note that the probability $p(F = 0|G = 0, B = 0) \simeq 0.111$ is greater than the prior probability p(F = 0) = 0.1 because the observation that the fuel gauge reads zero still provides some evidence in favour of an empty fuel tank.

8.2.2 D-separation

We now give a general statement of the d-separation property (Pearl, 1988) for directed graphs. Consider a general directed graph in which A, B, and C are arbitrary nonintersecting sets of nodes (whose union may be smaller than the complete set of nodes in the graph). We wish to ascertain whether a particular conditional independence statement $A \perp\!\!\perp B \mid C$ is implied by a given directed acyclic graph. To do so, we consider all possible paths from any node in A to any node in B. Any such path is said to be *blocked* if it includes a node such that either

- (a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
- (b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set C.

If all paths are blocked, then A is said to be d-separated from B by C, and the joint distribution over all of the variables in the graph will satisfy $A \perp B \mid C$.

The concept of d-separation is illustrated in Figure 8.22. In graph (a), the path from a to b is not blocked by node f because it is a tail-to-tail node for this path and is not observed, nor is it blocked by node e because, although the latter is a head-to-head node, it has a descendant c because is in the conditioning set. Thus the conditional independence statement $a \perp b \mid c$ does *not* follow from this graph. In graph (b), the path from a to b is blocked by node f because this is a tail-to-tail node that is observed, and so the conditional independence property $a \perp b \mid f$ will

be satisfied by any distribution that factorizes according to this graph. Note that this path is also blocked by node e because e is a head-to-head node and neither it nor its descendant are in the conditioning set.

For the purposes of d-separation, parameters such as α and σ^2 in Figure 8.5, indicated by small filled circles, behave in the same was as observed nodes. However, there are no marginal distributions associated with such nodes. Consequently parameter nodes never themselves have parents and so all paths through these nodes will always be tail-to-tail and hence blocked. Consequently they play no role in d-separation.

Another example of conditional independence and d-separation is provided by the concept of i.i.d. (independent identically distributed) data introduced in Section 1.2.4. Consider the problem of finding the posterior distribution for the mean of a univariate Gaussian distribution. This can be represented by the directed graph shown in Figure 8.23 in which the joint distribution is defined by a prior $p(\mu)$ together with a set of conditional distributions $p(x_n|\mu)$ for n = 1, ..., N. In practice, we observe $\mathcal{D} = \{x_1, ..., x_N\}$ and our goal is to infer μ . Suppose, for a moment, that we condition on μ and consider the joint distribution of the observations. Using d-separation, we note that there is a unique path from any x_i to any other $x_{j\neq i}$ and that this path is tail-to-tail with respect to the observed node μ . Every such path is blocked and so the observations $D = \{x_1, ..., x_N\}$ are independent given μ , so that

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu).$$
 (8.34)

© Christopher M. Bishop (2002–2006). Springer, 2006. First printing. Further information available at http://research.microsoft.com/~cmbishop/PRML

Section 2.3

Figure 8.24 A graphical representation of the 'naive Bayes' model for classification. Conditioned on the class label \mathbf{z} , the components of the observed vector $\mathbf{x} = (x_1, \dots, x_D)^T$ are assumed to be independent.

However, if we integrate over μ , the observations are in general no longer independent

$$p(\mathcal{D}) = \int_0^\infty p(\mathcal{D}|\mu) p(\mu) \,\mathrm{d}\mu \neq \prod_{n=1}^N p(x_n).$$
(8.35)

Here μ is a latent variable, because its value is not observed.

Another example of a model representing i.i.d. data is the graph in Figure 8.7 corresponding to Bayesian polynomial regression. Here the stochastic nodes correspond to $\{t_n\}$, w and \hat{t} . We see that the node for w is tail-to-tail with respect to the path from \hat{t} to any one of the nodes t_n and so we have the following conditional independence property

$$\hat{t} \perp \!\!\!\perp t_n \mid \mathbf{w}. \tag{8.36}$$

Thus, conditioned on the polynomial coefficients w, the predictive distribution for \hat{t} is independent of the training data $\{t_1, \ldots, t_N\}$. We can therefore first use the training data to determine the posterior distribution over the coefficients w and then we can discard the training data and use the posterior distribution for w to make predictions of \hat{t} for new input observations \hat{x} .

A related graphical structure arises in an approach to classification called the naive Bayes model, in which we use conditional independence assumptions to simplify the model structure. Suppose our observed variable consists of a D-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$, and we wish to assign observed values of \mathbf{x} to one of K classes. Using the 1-of-K encoding scheme, we can represent these classes by a Kdimensional binary vector z. We can then define a generative model by introducing a multinomial prior $p(\mathbf{z}|\boldsymbol{\mu})$ over the class labels, where the k^{th} component μ_k of $\boldsymbol{\mu}$ is the prior probability of class C_k , together with a conditional distribution $p(\mathbf{x}|\mathbf{z})$ for the observed vector x. The key assumption of the naive Bayes model is that, conditioned on the class \mathbf{z} , the distributions of the input variables x_1, \ldots, x_D are independent. The graphical representation of this model is shown in Figure 8.24. We see that observation of z blocks the path between x_i and x_j for $j \neq i$ (because such paths are tail-to-tail at the node z) and so x_i and x_j are conditionally independent given z. If, however, we marginalize out z (so that z is unobserved) the tail-to-tail path from x_i to x_j is no longer blocked. This tells us that in general the marginal density $p(\mathbf{x})$ will not factorize with respect to the components of \mathbf{x} . We encountered a simple application of the naive Bayes model in the context of fusing data from different sources for medical diagnosis in Section 1.5.

If we are given a labelled training set, comprising inputs $\{x_1, \ldots, x_N\}$ together with their class labels, then we can fit the naive Bayes model to the training data

Section 3.3

using maximum likelihood assuming that the data are drawn independently from the model. The solution is obtained by fitting the model for each class separately using the correspondingly labelled data. As an example, suppose that the probability density within each class is chosen to be Gaussian. In this case, the naive Bayes assumption then implies that the covariance matrix for each Gaussian is diagonal, and the contours of constant density within each class will be axis-aligned ellipsoids. The marginal density, however, is given by a superposition of diagonal Gaussians (with weighting coefficients given by the class priors) and so will no longer factorize with respect to its components.

The naive Bayes assumption is helpful when the dimensionality D of the input space is high, making density estimation in the full D-dimensional space more challenging. It is also useful if the input vector contains both discrete and continuous variables, since each can be represented separately using appropriate models (e.g., Bernoulli distributions for binary observations or Gaussians for real-valued variables). The conditional independence assumption of this model is clearly a strong one that may lead to rather poor representations of the class-conditional densities. Nevertheless, even if this assumption is not precisely satisfied, the model may still give good classification performance in practice because the decision boundaries can be insensitive to some of the details in the class-conditional densities, as illustrated in Figure 1.27.

We have seen that a particular directed graph represents a specific decomposition of a joint probability distribution into a product of conditional probabilities. The graph also expresses a set of conditional independence statements obtained through the d-separation criterion, and the d-separation theorem is really an expression of the equivalence of these two properties. In order to make this clear, it is helpful to think of a directed graph as a filter. Suppose we consider a particular joint probability distribution $p(\mathbf{x})$ over the variables **x** corresponding to the (nonobserved) nodes of the graph. The filter will allow this distribution to pass through if, and only if, it can be expressed in terms of the factorization (8.5) implied by the graph. If we present to the filter the set of all possible distributions $p(\mathbf{x})$ over the set of variables \mathbf{x} , then the subset of distributions that are passed by the filter will be denoted \mathcal{DF} , for *directed* factorization. This is illustrated in Figure 8.25. Alternatively, we can use the graph as a different kind of filter by first listing all of the conditional independence properties obtained by applying the d-separation criterion to the graph, and then allowing a distribution to pass only if it satisfies all of these properties. If we present all possible distributions $p(\mathbf{x})$ to this second kind of filter, then the d-separation theorem tells us that the set of distributions that will be allowed through is precisely the set \mathcal{DF} .

It should be emphasized that the conditional independence properties obtained from d-separation apply to any probabilistic model described by that particular directed graph. This will be true, for instance, whether the variables are discrete or continuous or a combination of these. Again, we see that a particular graph is describing a whole family of probability distributions.

At one extreme we have a fully connected graph that exhibits no conditional independence properties at all, and which can represent any possible joint probability

Figure 8.25 We can view a graphical model (in this case a directed graph) as a filter in which a probability distribution $p(\mathbf{x})$ is allowed through the filter if, and only if, it satisfies the directed factorization property (8.5). The set of all possible probability distributions $p(\mathbf{x})$ that pass through the filter is denoted \mathcal{DF} . We can alternatively use the graph to filter distributions according to whether they respect all of the conditional independencies implied by the d-separation properties of the graph. The d-separation theorem says that it is the same set of distributions \mathcal{DF} that will be allowed through this second kind of filter.

distribution over the given variables. The set $D\mathcal{F}$ will contain all possible distributions $p(\mathbf{x})$. At the other extreme, we have the fully disconnected graph, i.e., one having no links at all. This corresponds to joint distributions which factorize into the product of the marginal distributions over the variables comprising the nodes of the graph.

Note that for any given graph, the set of distributions DF will include any distributions that have additional independence properties beyond those described by the graph. For instance, a fully factorized distribution will always be passed through the filter implied by any graph over the corresponding set of variables.

We end our discussion of conditional independence properties by exploring the concept of a *Markov blanket* or *Markov boundary*. Consider a joint distribution $p(\mathbf{x}_1, \ldots, \mathbf{x}_D)$ represented by a directed graph having D nodes, and consider the conditional distribution of a particular node with variables \mathbf{x}_i conditioned on all of the remaining variables $\mathbf{x}_{j\neq i}$. Using the factorization property (8.5), we can express this conditional distribution in the form

$$p(\mathbf{x}_i | \mathbf{x}_{\{j \neq i\}}) = \frac{p(\mathbf{x}_1, \dots, \mathbf{x}_D)}{\int p(\mathbf{x}_1, \dots, \mathbf{x}_D) \, \mathrm{d}\mathbf{x}_i}$$
$$= \frac{\prod_k p(\mathbf{x}_k | \mathrm{pa}_k)}{\int \prod_k p(\mathbf{x}_k | \mathrm{pa}_k) \, \mathrm{d}\mathbf{x}_i}$$

in which the integral is replaced by a summation in the case of discrete variables. We now observe that any factor $p(\mathbf{x}_k | \mathbf{pa}_k)$ that does not have any functional dependence on \mathbf{x}_i can be taken outside the integral over \mathbf{x}_i , and will therefore cancel between numerator and denominator. The only factors that remain will be the conditional distribution $p(\mathbf{x}_i | \mathbf{pa}_i)$ for node \mathbf{x}_i itself, together with the conditional distributions for any nodes \mathbf{x}_k such that node \mathbf{x}_i is in the conditioning set of $p(\mathbf{x}_k | \mathbf{pa}_k)$, in other words for which \mathbf{x}_i is a parent of \mathbf{x}_k . The conditional $p(\mathbf{x}_i | \mathbf{pa}_i)$ will depend on the

8.3. Markov Random Fields 383

parents of node \mathbf{x}_i , whereas the conditionals $p(\mathbf{x}_k | \mathbf{pa}_k)$ will depend on the children of \mathbf{x}_i as well as on the *co-parents*, in other words variables corresponding to parents of node \mathbf{x}_k other than node \mathbf{x}_i . The set of nodes comprising the parents, the children and the co-parents is called the Markov blanket and is illustrated in Figure 8.26. We can think of the Markov blanket of a node \mathbf{x}_i as being the minimal set of nodes that isolates \mathbf{x}_i from the rest of the graph. Note that it is not sufficient to include only the parents and children of node \mathbf{x}_i because the phenomenon of explaining away means that observations of the child nodes will not block paths to the co-parents. We must therefore observe the co-parent nodes also.

8.3. Markov Random Fields

We have seen that directed graphical models specify a factorization of the joint distribution over a set of variables into a product of local conditional distributions. They also define a set of conditional independence properties that must be satisfied by any distribution that factorizes according to the graph. We turn now to the second major class of graphical models that are described by undirected graphs and that again specify both a factorization and a set of conditional independence relations.

A *Markov random field*, also known as a *Markov network* or an *undirected graphical model* (Kindermann and Snell, 1980), has a set of nodes each of which corresponds to a variable or group of variables, as well as a set of links each of which connects a pair of nodes. The links are undirected, that is they do not carry arrows. In the case of undirected graphs, it is convenient to begin with a discussion of conditional independence properties.

8.3.1 Conditional independence properties

In the case of directed graphs, we saw that it was possible to test whether a particular conditional independence property holds by applying a graphical test called d-separation. This involved testing whether or not the paths connecting two sets of nodes were 'blocked'. The definition of blocked, however, was somewhat subtle due to the presence of paths having head-to-head nodes. We might ask whether it is possible to define an alternative graphical semantics for probability distributions such that conditional independence is determined by simple graph separation. This

© Christopher M. Bishop (2002–2006). Springer, 2006. First printing. Further information available at http://research.microsoft.com/~cmbishop/PRML