Chapter 6

Decision Trees

6.1 Definitions

A decision tree (generally defined) is a tree whose internal nodes are tests
(on input patterns) and whose leaf nodes are categories (of patterns). We
show an example in Fig. 6.1. A decision tree assigns a class number (or
output) to an input pattern by filtering the pattern down through the tests
in the tree. Each test has mutually exclusive and exhaustive outcomes. For
example, test Ty in the tree of Fig. 6.1 has three outcomes; the left-most
one assigns the input pattern to class 3, the middle one sends the input
pattern down to test 74, and the right-most one assigns the pattern to
class 1. We follow the usual convention of depicting the leaf nodes by the
class number.! Note that in discussing decision trees we are not limited to
implementing Boolean functions—they are useful for general, categorically
valued functions.

There are several dimensions along which decision trees might differ:

1. The tests might be multivariate (testing on several features of the
input at once) or univariate (testing on only one of the features).

2. The tests might have two outcomes or more than two. (If all of the
tests have two outcomes, we have a binary decision tree.)

LOne of the researchers who has done a lot of work on learning decision trees is Ross
Quinlan. Quinlan distinguishes between classes and categories. He calls the subsets of
patterns that filter down to each tip categories and subsets of patterns having the same
label classes. In Quinlan’s terminology, our example tree has nine categories and three
classes. We will not make this distinction, however, but will use the words “category”
and “class” interchangeably to refer to what Quinlan calls “class.”
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Figure 6.1: A Decision Tree

3. The features or attributes might be categorical or numeric. (Binary-
valued ones can be regarded as either.)

4. We might have two classes or more than two. If we have two classes
and binary inputs, the tree implements a Boolean function, and is
called a Boolean decision tree.

It is straightforward to represent the function implemented by a uni-
variate Boolean decision tree in DNF form. The DNF form implemented
by such a tree can be obtained by tracing down each path leading to a tip
node corresponding to an output value of 1, forming the conjunction of the
tests along this path, and then taking the disjunction of these conjunctions.
We show an example in Fig. 6.2. In drawing univariate decision trees, each
non-leaf node is depicted by a single attribute. If the attribute has value 0
in the input pattern, we branch left; if it has value 1, we branch right.

The k-DL class of Boolean functions can be implemented by a multi-
variate decision tree having the (highly unbalanced) form shown in Fig.
6.3. Each test, ¢;, 1s a term of size k or less. The v; all have values of 0 or

1.
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Figure 6.2: A Decision Tree Implementing a DNF Function

6.2 Supervised Learning of Univariate Deci-
sion Trees

Several systems for learning decision trees have been proposed. Promi-
nent among these are ID3 and its new version, C4.5 [Quinlan, 1986,
Quinlan, 1993], and CART [Breiman, et al., 1984] We discuss here only
batch methods, although incremental ones have also been proposed

[Utgoff, 1989).

6.2.1 Selecting the Type of Test

As usual, we have n features or attributes. If the attributes are binary, the
tests are simply whether the attribute’s value is 0 or 1. If the attributes
are categorical, but non-binary, the tests might be formed by dividing the
attribute values into mutually exclusive and exhaustive subsets. A decision
tree with such tests is shown in Fig. 6.4. If the attributes are numeric, the
tests might involve “interval tests,” for example 7 < z; < 13.2.
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V1
Figure 6.3: A Decision Tree Implementing a Decision List

6.2.2 Using Uncertainty Reduction to Select Tests

The main problem in learning decision trees for the binary-attribute case
is selecting the order of the tests. For categorical and numeric attributes,
we must also decide what the tests should be (besides selecting the order).
Several techniques have been tried; the most popular one is at each stage
to select that test that maximally reduces an entropy-like measure.

We show how this technique works for the simple case of tests with
binary outcomes. Extension to multiple-outcome tests 1s straightforward
computationally but gives poor results because entropy is always decreased
by having more outcomes.

The entropy or uncertainty still remaining about the class of a pattern—
knowing that it is in some set, =, of patterns is defined as:

H(E) = — Zp(ilE) log, p(i|Z)

where p(i|Z) is the probability that a pattern drawn at random from Z
belongs to class ¢, and the summation is over all of the classes. We want to
select tests at each node such that as we travel down the decision tree, the
uncertainty about the class of a pattern becomes less and less.
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Figure 6.4: A Decision Tree with Categorical Attributes

Since we do not in general have the probabilities p(i|Z), we estimate
them by sample statistics. Although these estimates might be errorful,
they are nevertheless useful in estimating uncertainties. Let p(¢|Z) be the
number of patterns in = belonging to class ¢ divided by the total number
of patterns in Z. Then an estimate of the uncertainty is:

H(E) = = 3 plil) log, p(ilE)

For simplicity, from now on we’ll drop the “hats” and use sample statistics
as if they were real probabilities.

If we perform a test, T, having k possible outcomes on the patterns in
=, we will create k subsets, =1, 25, ..., 2. Suppose that n; of the patterns
in 2 are in Z; for i = 1,...,k. (Some n; may be 0.) If we knew that T
applied to a pattern in Z resulted in the j-th outcome (that is, we knew
that the pattern was in =), the uncertainty about its class would be:

H(=5) = = pli|Z;) logy plil=;)

and the reduction in uncertainty (beyond knowing only that the pattern
was in E) would be:

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.



86 CHAPTER 6. DECISION TREES

H(Z) - H(5))

Of course we cannot say that the test 7" is guaranteed always to produce
that amount of reduction in uncertainty because we don’t know that the
result of the test will be the j-th outcome. But we can estimate the average
uncertainty over all the Z;, by:

ElH7(2)] = ZP(EJ)H(EJ)

where by Hp(Z) we mean the average uncertainty after performing test T
on the patterns in =, p(E;) is the probability that the test has outcome j,
and the sum is taken from 1 to k. Again, we don’t know the probabilities
p(Z;), but we can use sample values. The estimate p(=;) of p(Z;) is just
the number of those patterns in = that have outcome j divided by the total
number of patterns in =. The average reduction in uncertainty achieved by
test T' (applied to patterns in =) is then:

Rr(2) = H(E) - E[Hr(Z)]

An important family of decision tree learning algorithms selects for the
root of the tree that test that gives maximum reduction of uncertainty, and
then applies this criterion recursively until some termination condition is
met (which we shall discuss in more detail later). The uncertainty calcu-
lations are particularly simple when the tests have binary outcomes and
when the attributes have binary values. We’ll give a simple example to
illustrate how the test selection mechanism works in that case.

Suppose we want to use the uncertainty-reduction method to build a
decision tree to classify the following patterns:

pattern | class

0

e’ e e N S e’
_ o= oo oo
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Figure 6.5: Eight Patterns to be Classified by a Decision Tree

What single test, z1, @2, or 3, should be performed first? The illustration
in Fig. 6.5 gives geometric intuition about the problem.

The initial uncertainty for the set, =, containing all eight points is:

H(Z) = —(6/8) logs (6/8) — (2/8) logs (2/8) = 0.1
Next, we calculate the uncertainty reduction if we perform wx; first. The
left-hand branch has only patterns belonging to class 0 (we call them the

set Z;), and the right-hand-branch (Z,) has two patterns in each class. So,
the uncertainty of the left-hand branch is:

Ha,(21) = —(4/4) ogs(4/4) — (0/4) logs(0/4) = 0
And the uncertainty of the right-hand branch is:
Hey (Br) = —(2/4) logy(2/4) — (2/4) log,(2/4) = 1

Half of the patterns “go left” and half “go right” on test z;. Thus, the
average uncertainty after performing the z; test is:

1/2H, (Z)) +1/2H,,(Z,) = 0.5
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Therefore the uncertainty reduction on = achieved by x 1s:
R;, (2)=081-05=0.31

By similar calculations, we see that the test x5 achieves exactly the same
uncertainty reduction, but x5 achieves no reduction whatsoever. Thus, our
“greedy” algorithm for selecting a first test would select either z; or zs.
Suppose x; 1s selected. The uncertainty-reduction procedure would select
x3 as the next test. The decision tree that this procedure creates thus
implements the Boolean function: f = xqx3.

6.2.3 Non-Binary Attributes

If the attributes are non-binary, we can still use the uncertainty-reduction
technique to select tests. But now, in addition to selecting an attribute, we
must select a test on that attribute. Suppose for example that the value
of an attribute 1s a real number and that the test to be performed is to
set a threshold and to test to see if the number is greater than or less
than that threshold. In principle, given a set of labeled patterns, we can
measure the uncertainty reduction for each test that is achieved by every
possible threshold (there are only a finite number of thresholds that give
different test results if there are only a finite number of training patterns).
Similarly, if an attribute is categorical (with a finite number of categories),
there are only a finite number of mutually exclusive and exhaustive subsets
into which the values of the attribute can be split. We can calculate the
uncertainty reduction for each split.

6.3 Networks Equivalent to Decision Trees

Since univariate Boolean decision trees are implementations of DNF func-
tions, they are also equivalent to two-layer, feedforward neural networks.
We show an example in Fig. 6.6. The decision tree at the left of the figure
implements the same function as the network at the right of the figure. Of
course, when implemented as a network, all of the features are evaluated
in parallel for any input pattern, whereas when implemented as a decision
tree only those features on the branch traveled down by the input pattern
need to be evaluated. The decision-tree induction methods discussed in this
chapter can thus be thought of as particular ways to establish the structure
and the weight values for networks.
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Figure 6.6: A Univariate Decision Tree and its Equivalent Network

Multivariate decision trees with linearly separable functions at each
node can also be implemented by feedforward networks—in this case three-
layer ones. We show an example in Fig. 6.7 in which the linearly separable
functions, each implemented by a TLU, are indicated by L1, Lo, Ls, and
L4. Again, the final layer has fixed weights, but the weights in the first two
layers must be trained. Different approaches to training procedures have
been discussed by [Brent, 1990], by [John, 1995], and (for a special case)
by [Marchand & Golea, 1993].

6.4 Overfitting and Evaluation

6.4.1 Overfitting

In supervised learning, we must choose a function to fit the training set from
among a set of hypotheses. We have already showed that generalization is
impossible without bias. When we know a priori that the function we are
trying to guess belongs to a small subset of all possible functions, then,
even with an incomplete set of training samples, it is possible to reduce the
subset of functions that are consistent with the training set sufficiently to
make useful guesses about the value of the function for inputs not in the
training set. And, the larger the training set, the more likely 1t is that even
a randomly selected consistent function will have appropriate outputs for
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Figure 6.7: A Multivariate Decision Tree and its Equivalent Network

patterns not yet seen.

However, even with bias, if the training set is not sufficiently large com-
pared with the size of the hypothesis space, there will still be too many
consistent functions for us to make useful guesses, and generalization per-
formance will be poor. When there are too many hypotheses that are
consistent with the training set, we say that we are overfitting the train-
ing data. Overfitting is a problem that we must address for all learning
methods.

Since a decision tree of sufficient size can implement any Boolean func-
tion there is a danger of overfitting—especially if the training set is small.
That is, even if the decision tree is synthesized to classify all the members
of the training set correctly, it might perform poorly on new patterns that
were not used to build the decision tree. Several techniques have been pro-
posed to avoid overfitting, and we shall examine some of them here. They
make use of methods for estimating how well a given decision tree might
generalize—methods we shall describe next.

6.4.2 Validation Methods

The most straightforward way to estimate how well a hypothesized function
(such as a decision tree) performs on a test set is to test it on the test
set! But, if we are comparing several learning systems (for example, if
we are comparing different decision trees) so that we can select the one
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that performs the best on the test set, then such a comparison amounts to
“training on the test data.” True, training on the test data enlarges the
training set, with a consequent expected improvement in generalization, but
there is still the danger of overfitting if we are comparing several different
learning systems. Another technique is to split the training set—using (say)
two-thirds for training and the other third for estimating generalization
performance. But splitting reduces the size of the training set and thereby
increases the possibility of overfitting. We next describe some validation
techniques that attempt to avoid these problems.

Cross-Validation

In cross-validation, we divide the training set = into K mutually exclusive
and exhaustive equal-sized subsets: =,..., 2. For each subset, Z;, train
on the union of all of the other subsets, and empirically determine the error
rate, &;, on Z;. (The error rate is the number of classification errors made
on Z; divided by the number of patterns in =;.) An estimate of the error
rate that can be expected on new patterns of a classifier trained on all the
patterns in = is then the average of the ;.

Leave-one-out Validation

Leave-one-out validation is the same as cross validation for the special case
in which K equals the number of patterns in =, and each Z; consists of a
single pattern. When testing on each Z;, we simply note whether or not
a mistake was made. We count the total number of mistakes and divide
by K to get the estimated error rate. This type of validation is, of course,
more expensive computationally, but useful when a more accurate estimate
of the error rate for a classifier is needed.

6.4.3 Avoiding Overfitting in Decision Trees

Near the tips of a decision tree there may be only a few patterns per node.
For these nodes, we are selecting a test based on a very small sample, and
thus we are likely to be overfitting. This problem can be dealt with by ter-
minating the test-generating procedure before all patterns are perfectly split
into their separate categories. That is, a leaf node may contain patterns
of more than one class, but we can decide in favor of the most numerous
class. This procedure will result in a few errors but often accepting a small
number of errors on the training set results in fewer errors on a testing set.

This behavior is illustrated in Fig. 6.8.
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Figure 6.8: Determining When Overfitting Begins

One can use cross-validation techniques to determine when to stop split-
ting nodes. If the cross validation error increases as a consequence of a node
split, then don’t split. One has to be careful about when to stop, though,
because underfitting usually leads to more errors on test sets than does
overfitting. There 1s a general rule that the lowest error-rate attainable by
a sub-tree of a fully expanded tree can be no less than 1/2 of the error rate
of the fully expanded tree [Weiss & Kulikowski, 1991, page 126].

Rather than stopping the growth of a decision tree, one might grow
it to its full size and then prune away leaf nodes and their ances-
tors until cross-validation accuracy no longer increases. This technique
is called post-pruning. Various techniques for pruning are discussed in

[Weiss & Kulikowski, 1991].

6.4.4 Minimum-Description Length Methods

An important tree-growing and pruning technique is based on the
minimum-description-length (MDL) principle. (MDL is an important idea
that extends beyond decision-tree methods [Rissanen, 1978].) The idea is
that the simplest decision tree that can predict the classes of the training
patterns is the best one. Consider the problem of transmitting just the
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labels of a training set of patternsassuming that the receiver of this infor-
mation already has the ordered set of patterns. If there are m patterns,
each labeled by one of R classes, one could transmit a list of m R-valued
numbers. Assuming equally probable classes, this transmission would re-
quire mlog, R bits. Or, one could transmit a decision tree that correctly
labelled all of the patterns. The number of bits that this transmission would
require depends on the technique for encoding decision trees and on the size
of the tree. If the tree is small and accurately classifies all of the patterns, it
might be more economical to transmit the tree than to transmit the labels
directly. In between these extremes, we might transmit a tree plus a list of
labels of all the patterns that the tree misclassifies.

In general, the number of bits (or description length of the binary en-
coded message) is t + d, where t is the length of the message required to
transmit the tree, and d is the length of the message required to transmit
the labels of the patterns misclassified by the tree. In a sense, that tree as-
sociated with the smallest value of £ 4 d is the best or most economical tree.
The MDL method is one way of adhering to the Occam’s razor principle.

Quinlan and Rivest [Quinlan & Rivest, 1989] have proposed techniques
for encoding decision trees and lists of exception labels and for calculating
the description length (¢ + d) of these trees and labels. They then use the
description length as a measure of quality of a tree in two ways:

1. In growing a tree, they use the reduction in description length to
select tests (instead of reduction in uncertainty).

2. In pruning a tree after it has been grown to zero error, they prune
away those nodes (starting at the tips) that achieve a decrease in the
description length.

These techniques compare favorably with the uncertainty-reduction method,
although they are quite sensitive to the coding schemes used.

6.4.5 Noise in Data

Noise in the data means that one must inevitably accept some number
of errors—depending on the noise level. Refusal to tolerate errors on the
training set when there is noise leads to the problem of “fitting the noise.”
Dealing with noise, then, requires accepting some errors at the leaf nodes
just as does the fact that there are a small number of patterns at leaf nodes.
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6.5 The Problem of Replicated Subtrees

Decision trees are not the most economical means of implementing some
Boolean functions. Consider, for example, the function f = zix2 + x32a.
A decision tree for this function is shown in Fig. 6.9. Notice the replicated
subtrees shown circled. The DNF-form equivalent to the function imple-
mented by this decision tree is f = w125 + ®1Tax324 + T1x324. This DNF
form is non-minimal (in the number of disjunctions) and is equivalent to
f=x1%2 + 324,

Figure 6.9: A Decision Tree with Subtree Replication

The need for replication means that it takes longer to learn the tree
and that subtrees replicated further down the tree must be learned using a
smaller training subset. This problem is sometimes called the fragmentation
problem.

Several approaches might be suggested for dealing with fragmenta-
tion. One is to attempt to build a decision graph instead of a tree
[Oliver, Dowe, & Wallace, 1992, Kohavi, 1994]. A decision graph that im-
plements the same decisions as that of the decision tree of Fig. 6.9 is shown
in Fig. 6.10.

Another approach is to use multivariate (rather than univariate tests at
each node). In our example of learning f = x122 + w324, if we had a test
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Figure 6.10: A Decision Graph

for 129 and a test for xsz4, the decision tree could be much simplified,
as shown in Fig. 6.11. Several researchers have proposed techniques for
learning decision trees in which the tests at each node are linearly separable
functions. [John, 1995] gives a nice overview (with several citations) of
learning such linear discriminant trees and presents a method based on
“soft entropy.”

A third method for dealing with the replicated subtree problem involves
extracting propositional “rules” from the decision tree. The rules will have
as antecedents the conjunctions that lead down to the leaf nodes, and as
consequents the name of the class at the corresponding leaf node. An ex-
ample rule from the tree with the repeating subtree of our example would
be: @1 A —ws Az Azg D 1. Quinlan [Quinlan, 1987] discusses methods
for reducing a set of rules to a simpler set by 1) eliminating from the an-
tecedent of each rule any “unnecessary” conjuncts, and then 2) eliminating
“unnecessary” rules. A conjunct or rule is determined to be unnecessary
if its elimination has little effect on classification accuracy—as determined
by a chi-square test, for example. After a rule set is processed, 1t might be
the case that more than one rule is “active” for any given pattern, and care
must be taken that the active rules do not conflict in their decision about
the class of a pattern.
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Figure 6.11: A Multivariate Decision Tree

6.6 The Problem of Missing Attributes

6.7 Comparisons

Several experimenters have compared decision-tree, neural-net, and
nearest-neighbor classifiers on a wide variety of problems. For a
comparison of neural nets versus decision trees, for example, see
[Dietterich, et al., 1990, Shavlik, Mooney, & Towell, 1991, Quinlan, 1994].
In their StatLog project, [Taylor, Michie, & Spiegalhalter, 1994] give thor-
ough comparisons of several machine learning algorithms on several differ-
ent types of problems. There seems to be no single type of classifier that is
best for all problems. And, there do not seem to be any general conclusions
that would enable one to say which classifier method is best for which sorts
of classification problems, although [Quinlan, 1994] does provide some in-
tuition about properties of problems that might render them ill suited for
decision trees, on the one hand, or backpropagation, on the other.

6.8 Bibliographical and Historical Remarks
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