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The problem of searching for patterns in data is a fundamental one and has a long and 
successful history. For instance, the extensive astronomical observations of Tycho 
Brahe in the 16th century allowed Johannes Kepler to discover the empirical laws of 
planetary motion, which in turn provided a springboard for the development of clas­
sical mechanics. Similarly, the discovery of regularities in atomic spectra played a 
key role in the development and verification of quantum physics in the early twenti­
eth century. The field of pattern recognition is concerned with the automatic discov­
ery of regularities in data through the use of computer algorithms and with the use of 
these regularities to take actions such as classifying the data into different categories. 

Consider the example of recognizing handwritten digits, illustrated in Figure 1.1. 
Each digit corresponds to a 28 x 28 pixel image and so can be represented by a vector 
x comprising 784 real numbers. The goal is to build a machine that will take such a 
vector x as input and that will produce the identity of the digit 0, ... , 9 as the output. 
This is a nontrivial problem due to the wide variability of handwriting. It could be 
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2 1. INTRODUCTION 

Figure 1.1 Examples of hand-written dig­
its taken from US zip codes. 

tackled using handcrafted rules or heuristics for distinguishing the digits based on 
the shapes of the strokes, but in practice such an approach leads to a proliferation of 
rules and of exceptions to the rules and so on, and invariably gives poor results. 

Far better results can be obtained by adopting a machine learning approach in 
which a large set of N digits {x1, ... , XN} called a training set is used to tune the 
parameters of an adaptive model. The categories of the digits in the training set 
are known in advance, typically by inspecting them individually and hand-labelling 
them. We can express the category of a digit using target vector t, which represents 
the identity of the corresponding digit. Suitable techniques for representing cate­
gories in terms of vectors will be discussed later. Note that there is one such target 
vector t for each digit image x. 

The result of running the machine learning algorithm can be expressed as a 
function y(x) which takes a new digit image x as input and that generates an output 
vector y, encoded in the same way as the target vectors. The precise form of the 
function y(x) is determined during the training phase, also known as the learning 
phase, on the basis of the training data. Once the model is trained it can then de­
termine the identity of new digit images, which are said to comprise a test set. The 
ability to categorize correctly new examples that differ from those used for train­
ing is known as generalization. In practical applications, the variability of the input 
vectors will be such that the training data can comprise only a tiny fraction of all 
possible input vectors, and so generalization is a central goal in pattern recognition. 

For most practical applications, the original input variables are typically prepro­
cessed to transform them into some new space of variables where, it is hoped, the 
pattern recognition problem will be easier to solve. For instance, in the digit recogni­
tion problem, the images of the digits are typically translated and scaled so that each 
digit is contained within a box of a fixed size. This greatly reduces the variability 
within each digit class, because the location and scale of all the digits are now the 
same, which makes it much easier for a subsequent pattern recognition algorithm 
to distinguish between the different classes. This pre-processing stage is sometimes 
also called feature extraction. Note that new test data must be pre-processed using 
the same steps as the training data. 

Pre-processing might also be performed in order to speed up computation. For 
example, if the goal is real-time face detection in a high-resolution video stream, 
the computer must handle huge numbers of pixels per second, and presenting these 
directly to a complex pattern recognition algorithm may be computationally infeasi­
ble. Instead, the aim is to find useful features that are fast to compute, and yet that 
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also preserve useful discriminatory information enabling faces to be distinguished 
from non-faces. These features are then used as the inputs to the pattern recognition 
algorithm. For instance, the average value of the image intensity over a rectangular 
subregion can be evaluated extremely efficiently (Viola and Jones, 2004), and a set of 
such features can prove very effective in fast face detection. Because the number of 

· such features is smaller than the number of pixels, this kind of pre-processing repre­
sents a form of dimensionality reduction. Care must be taken during pre-processing 
because often information is discarded, and if this information is important to the 
solution of the problem then the overall accuracy of the system can suffer. 

Applications in which the training data comprises examples of the input vectors 
along with their corresponding target vectors are known as supervised learning prob­
lems. Cases such as the digit recognition example, in which the aim is to assign each 
input vector to one of a finite number of discrete categories, are called classification 
problems. If the desired output consists of one or more continuous variables, then 
the task is called regression. An example of a regression problem would be the pre­
diction of the yield in a chemical manufacturing process in which the inputs consist 
of the concentrations of reactants, the temperature, and the pressure. 

In other pattern recognition problems, the training data consists of a set of input 
vectors x without any corresponding target values. The goal in such unsupervised 
learning problems may be to discover groups of similar examples within the data, 
where it is called clustering, or to determine the distribution of data within the input 
space, known as density estimation, or to project the data from a high-dimensional 
space down to two or three dimensions for the purpose of visualization. 

Finally, the technique of reinforcement learning (Sutton and Barto, 1998) is con­
cerned with the problem of finding suitable actions to take in a given situation in 
order to maximize a reward. Here the learning algorithm is not given examples of 
optimal outputs, in contrast to supervised learning, but must instead discover them 
by a process of trial and error. Typically there is a sequence of states and actions in 
which the learning algorithm is interacting with its environment. In many cases, the 
current action not only affects the immediate reward but also has an impact on there­
ward at all subsequent time steps. For example, by using appropriate reinforcement 
learning techniques a neural network can learn to play the game of backgammon to a 
high standard (Tesauro, 1994). Here the network must learn to take a board position 
as input, along with the result of a dice throw, and produce a strong move as the 
output. This is done by having the network play against a copy of itself for perhaps a 
million games. A major challenge is that a game of backgammon can involve dozens 
of moves, and yet it is only at the end of the game that the reward, in the form of 
victory, is achieved. The reward must then be attributed appropriately to all of the 
moves that led to it, even though some moves will have been good ones and others 
less so. This is an example of a credit assignment problem. A general feature of re­
inforcement learning is the trade-off between exploration, in which the system tries 
out new kinds of actions to see how effective they are, and exploitation, in which 
the system makes use of actions that are known to yield a high reward. Too strong 
a focus on either exploration or exploitation will yield poor results. Reinforcement 
learning continues to be an active area of machine learning research. However, a 
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Figure 1.2 Plot of a training data set of N = 
10 points, shown as blue circles, 
each comprising an observation 
of the input variable x along with 
the corresponding target variable t 
t. The green curve shows the 
function sin(21rx) used to gener­
ate the data. Our goal is to pre­
dict the value of t tor some new 
value of x, without knowledge of 
the green curve. 
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detailed treatment lies beyond the scope of this book. 
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Although each of these taskS needs its own tools and techniques, many of the 
key ideas that underpin them are common to all such problems. One of the main 
goals of this chapter is to introduce, in a relatively informal way, several of the most 
important of these concepts and to illustrate them using simple examples. Later in 
the book we shall see these same ideas re-emerge in the context of more sophisti­
cated models that are applicable to real-world pattern recognition applications. This 
chapter also provides a self-contained introduction to three important tools that will 
be used throughout the book, namely probability theory, decision theory, and infor­
mation theory. Although these might sound like daunting topics, they are in fact 
straightforward, and a clear understanding of them is essential if machine learning 
techniques are to be used to best effect in practical applications. 

1.1. Example: Polynomial Curve Fitting -------
We begin by introducing a simple regression problem, which we shall use as a run­
ning example throughout this chapter to motivate a number of key concepts. Sup­
pose we observe a real-valued input variable x and we wish to use this observation to 
predict the value of a real-valued target variable t. For the present purposes, it is in­
structive to consider an artificial example using synthetically generated data because 
we then know the precise process that generated the data for comparison against any 
learned model. The data for this example is generated from the function sin(21rx) 
with random noise included in the target values, as described in detail in Appendix A. 

Now suppose that we are given a training set comprising N observations of x, 
written x = ( x 1, ... , x N) T, together with corresponding observations of the values 
oft, denoted t = ( t1. ... , t N) T. Figure 1.2 shows a plot of a training set comprising 
N = 10 data points. The input data set x in Figure 1.2 was generated by choos­
ing values of Xn, for n = 1, ... , N, spaced uniformly in range [0, 1], and the target 
data set t was obtained by first computing the corresponding values of the function 
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sin(21rx) and then adding a small level of random noise having a Gaussian distri­
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in 
order to obtain the corresponding value tn. By generating data in this way, we are 
capturing a property of many real data sets, namely that they possess an underlying 
regularity, which we wish to learn, but that individual observations are corrupted by 
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro­
cesses such as radioactive decay but more typically is due to there being sources of 
variability that are themselves unobserved. 

Our goal is to exploit this training set in order to make predictions of the value 
t of the target variable for some new value x of the input variable. As we shall see 
later, this involves implicitly trying to discover the underlying function sin(21rx). 
This is intrinsically a difficult problem as we have to generalize from a finite data 
set. Furthermore the observed data are corrupted with noise, and so for a given x 
there is uncertainty as to the appropriate value for 1. Probability theory, discussed 
in Section 1.2, provides a framework for expressing such uncertainty in a precise 
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to 
exploit this probabilistic representation in order to make predictions that are optimal 
according to appropriate criteria. 

For the moment, however, we shall proceed rather informally and consider a 
simple approach based on curve fitting. In particular, we shall fit the data using a 
polynomial function of the form 

(1.1) 

where M is the order of the polynomial, and xi denotes x raised to the power of j. 
The polynomial coefficients w0 , ... , WM are collectively denoted by the vector w. 
Note that, although the polynomial function y(x, w) is a nonlinear function of x, it 
is a linear function of the coefficients w. Functions, such as the polynomial, which 
are linear in the unknown parameters have important properties and are called linear 
models and will be discussed extensively in Chapters 3 and 4. 

The value; of the coefficients will be determined by fitting the polynomial to the 
training data. This can be done by minimizing an error function that measures the 
misfit between the function y(x, w), for any given value of w, and the training set 
data points. One simple choice of error function, which is widely used, is given by 
the sum of the squares of the errors between the predictions y ( Xn, w) for each data 
point Xn and the corresponding target values tn. so that we minimize 

1 N 
E(w) = 2 L {y(xn, w)- tn}

2 (1.2) 
n=l 

where the factor of 1/2 is included for later convenience. We shall discuss the mo­
tivation for this choice of error function later in this chapter. For the moment we 
simply note that it is a nonnegative quantity that would be zero if, and only if, the 
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Figure 1.3 The error function (1.2) corre­
sponds to (one- half of) the sum of t 
the squares of the displacements 
(shown by the vertical green bars) 

Exercise 1.1 

of each data point from the function 
y(x, w). 

X 

function y(x, w) were to pass exactly through each training data point. The geomet­
rical interpretation of the sum-of-squares error function is illustrated in Figure 1.3. 

We can solve the curve fitting problem by choosing the value of w for which 
E(w) is as small as possible. Because the error function is a quadratic function of 
the coefficients w, its derivatives with respect to the coefficients will be linear in the 
elements of w, and so the minimization of the error function has a unique solution, 
denoted by w*, which can be found in closed form. The resulting polynomial is 
given by the function y(x, w*). 

There remains the problem of choosing the order M of the polynomial, and as 
we shilll see this will tum out to be an example of an important concept called model 
comparison or model selection. In Figure 1.4, we show four examples of the results 
of fitting polynomials having orders M = 0, 1, 3, and 9 to the data set shown in 
Figure 1.2. 

We notice that the constant (M = 0) and first order (M = 1) polynomials 
give rather poor fits to the data and consequently rather poor representations of the 
function sin(21rx). The third order (M = 3) polynomial seems to give the best fit 
to the function sin(21rx) of the examples shown in Figure 1.4. When we go to a 
much higher order polynomial (M = 9), we obtain an excellent fit to the training 
data. In fact, the polynomial passes exactly through each data point and E( w*) = 0. 
However, the fitted curve oscillates wildly and gives a very poor representation of 
the function sin(21rx). This latter behaviour is known as over-fitting. 

As we have noted earlier, the goal is to achieve good generalization by making 
accurate predictions for new data. We can obtain some quantitative insight into the 
dependence of the generalization performance on M by considering a separate test 
set comprising 100 data points generated using exactly the same procedure used 
to generate the training set points but with new choices for the random noise values 
included in the target values. For each choice of M, we can then evaluate the residual 
value of E(w*) given by (1.2) for the training data, and we can also evaluate E(w*) 
for the test data set. It is sometimes more convenient to use the root-mean-square 
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Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in 
Figure 1.2. 

(RMS) error defined by 

ERMS = V2E(w*)jN (1.3) 

in which the division by N allows us to compare different sizes of data sets on 
an equal footing, and the square root ensures that ERMS is measured on the same 
scale (and in the same units) as the target variable t. Graphs of the training and 
test set RMS errors are shown, for various values of M, in Figure 1.5. The test 
set error is a measure of how well we are doing in predicting the values of t for 
new data observations of x. We note from Figure 1.5 that small values of M give 
relatively large values of the test set error, and this can be attributed to the fact that 
the corresponding polynomials are rather inflexible and are incapable of capturing 
the oscillations in the function sin(21rx). Values of Min the range 3 ::;; M ::;; 8 
give small values for the test set error, and these also give reasonable representations 
of the generating function sin(21rx ), as can be seen, for the case of M = 3, from 
Figure 1.4. 
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Figure 1.5 Graphs of the root-mean-square 
error, defined by (1.3), evaluated 
on the training set and on an inde­
pendent test set for various values 
of M. 

~ 
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For M = 9, the training set error goes to zero, as we might expect because 
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients 
wo, ... , wg, and so can be tuned exactly to the 10 data points in the training set. 
However, the test set error has become very large and, as we saw in Figure 1.4, the 
corresponding function y(x, w*) exhibits wild oscillations. 

This may seem paradoxical because a polynomial of given order contains all 
lower order polynomials as special cases. The M = 9 polynomial is therefore capa­
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we 
might suppose that the best predictor of new data would be the function sin(21rx) 
from which the data was generated (and we shall see later that this is indeed the 
case). We know that a power series expansion of the function sin(27rx) contains 
terms of all orders, so we might expect that results should improve monotonically as 
we increase M. 

We can gain some insight into the problem by examining the values of the co­
efficients w* obtained from polynomials of various order, as shown in Table 1.1. 
We see that, as M increases, the magnitude of the coefficients typically gets larger. 
In particular for the M = 9 polynomial, the coefficients have become finely tuned 
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w* for 
polynomials of various order. 
Observe how the typical mag­
nitude of the coefficients in­
creases dramatically as the or­
der of the polynomial increases. 

M=O 
0.19 

M=1 
0.82 

-1.27 

M=6 
0.31 
7.99 

-25.43 
17.37 

M=9 
0.35 

232.37 
-5321.83 
48568.31 

-231639.30 
640042.26 

-1061800.52 
1042400.18 
-557682.99 
125201.43 
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M. = g 
polynomial for N = 15 data points {left plot) and N = 100 data points (right plot). We see that increasing the 
size of the data set reduces the over-fitting problem. 

Section 3.4 

ing polynomial function matches each of the data points exactly, but between data 
points (particularly near the ends of the range) the function exhibits the large oscilla­
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible 
polynomials with larger values of M are becoming increasingly tuned to the random 
noise on the target values. 

It is also interesting to examine the behaviour of a given model as the size of the 
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity, 
the over-fitting problem become less severe as the size of the data set increases. 
Another way to say this is that the larger the data set, the more complex (in other 
words more flexible) the model that we can afford to fit to the data. One rough 
heuristic that is sometimes advocated is that the number of data points should be 
no less than some multiple (say 5 or 10) of the number of adaptive parameters in 
the model. However, as we shall see in Chapter 3, the number of parameters is not 
necessarily the most appropriate measure of model complexity. 

Also, there is something rather unsatisfying about having to limit the number of 
parameters in a model according to the size of the available training set. It would 
seem more reasonable to choose the complexity of the model according to the com­
plexity of the problem being solved. We shall see that the least squares approach 
to finding the model parameters represents a specific case of maximum likelihood 
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as 
a general property of maximum likelihood. By adopting a Bayesian approach, the 
over-fitting problem can be avoided. We shall see that there is no difficulty from 
a Bayesian perspective in employing models for which the number of parameters 
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective 
number of parameters adapts automatically to the size of the data set. 

For the moment, however, it is instructive to continue with the current approach 
and to consider how in practice we can apply it to data sets of limited size where we 
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1 ln.\= -18 
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error 
function (1.4) for two values of the regularization parameter.\ corresponding to ln.\ = -18 and In.\ = 0. The 
case of no regularizer, i.e., .\ = 0, corresponding to ln.\= -oo, is shown at the bottom right of Figure 1.4. 

Exercise 1.2 

may wish to use relatively complex and flexible models. One technique that is often 
used to control the over-fitting phenomenon in such cases is that of regularization, 
which involves adding a penalty term to the error function ( 1.2) in order to discourage 
the coefficients from reaching large values. The simplest such penalty term takes the 
form of a sum of squares of all of the coefficients, leading to a modified error function 

of the form 

(1.4) 

where \\w\\ 2 = WTW = w5 + wr + ... + w~. and the coefficient A governs the rel­
ative importance of the regularization term compared with the sum-of-squares error 
term. Note that often the coefficient w0 is omitted from the regularizer because its 
inclusion causes the results to depend on the choice of origin for the target variable 
(Hastie et al., 2001), or it may be included but with its own regularization coefficient 
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function 
in (1.4) can be minimized exactly in closed form. Techniques such as this are known 
in the statistics literature as shrinkage methods because they reduce the value of the 
coefficients. The particular case of a quadratic regularizer is called ridge regres­
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is 
known as weight decay. 

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the 
same data set as before but now using the regularized error function given by (1.4). 
We see that, for a value of ln A = -18, the over-fitting has been suppressed and we 
now obtain a much closer representation of the underlying function sin(27rx). If, 
however, we use too large a value for A then we again obtain a poor fit, as shown in 
Figure 1.7 for ln A = 0. The corresponding coefficients from the fitted polynomials 
are given in Table 1.2, showing that regularization has the desired effect of reducing 
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Table 1.2 Table of the coefficients w* for M = 
9 polynomials with various values for 
the regularization parameter A. Note 
that ln A = -oo corresponds to a 
model with no regularization, i.e., to 
the graph at the bottom right in Fig­
ure 1.4. We see that, as the value of 
A increases, the typical magnitude of 
the coefficients gets smaller. 

w* 0 wr 
w2 
w* 3 

w~ 
w* 5 
wt 
w~ 
w; 
w~ 

lnA = -oo 
0.35 

232.37 
-5321.83 
48568.31 

-231639.30 
640042.26 

-1061800.52 
1042400.18 
-557682.99 
125201.43 

lnA = -18 
0.35 
4.74 

-0.77 
-31.97 
-3.89 
55.28 
41.32 

lnA = 0 
0.13 

-0.05 
-0.06 
-0.05 
-0.03 
-0.02 
-0.01 

Section 1.3 

-45.95 
-91.53 
72.68 

the magnitude of the coefficients. 

-0.00 
0.00 
0.01 

The impact of the regularization term on the generalization error can be seen by 
plotting the value of the RMS error (1.3) for both training and test sets against ln A, 
as shown in Figure 1.8. We see that in effect A now controls the effective complexity 
of the model and hence determines the degree of over-fitting. 

The issue of model complexity is an important one and will be discussed at 
length in Section 1.3. Here we simply note that, if we were trying to solve a practical 
application using this approach of minimizing an error function, we would have to 
find a way to determine a suitable value for the model complexity. The results above 
suggest a simple way of achieving this, namely by taking the available data and 
partitioning it into a training set, used to determine the coefficients w, and a separate 
validation set, also called a hold-out set, used to optimize the model complexity 
(either M or A). In many cases, however, this will prove to be too wasteful of 
valuable training data, and we have to seek more sophisticated approaches. 

So far our discussion of polynomial curve fitting has appealed largely to in­
tuition. We now seek a more principled approach to solving problems in pattern 
recognition by turning to a discussion of probability theory. As well as providing the 
foundation for nearly all of the subsequent developments in this book, it will also 

Figure 1.8 Graph of the root-mean-square er­
ror (1.3) versus ln A for the M = 9 
polynomial. --- Training 

---Test 

J 0.5 

-35 -30 lnA -25 -20 
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give us some important insights into the concepts we have introduced in the con­
text of polynomial curve fitting and will allow us to extend these to more complex 
situations. 

1.2. Probability Theory ------
A key concept in the field of pattern recognition is that of uncertainty. It arises both 
through noise on measurements, as well as through the finite size of data sets. Prob­
ability theory provides a consistent framework for the quantification and manipula­
tion of uncertainty and forms one of the central foundations for pattern recognition. 
When combined with decision theory, discussed in Section 1.5, it allows us to make 
optimal predictions given all the information available to us, even though that infor­
mation may be incomplete or ambiguous. 

We will introduce the basic concepts of probability theory by considering a sim­
ple example. Imagine we have two boxes, one red and one blue, and in the red box 
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange. 
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes 
and from that box we randomly select an item of fruit, and having observed which 
sort of fruit it is we replace it in the box from which it came. We could imagine 
repeating this process many times. Let us suppose that in so doing we pick the red 
box 40% of the time and we pick the blue box 60% of the time, and that when we 
remove an item of fruit from a box we are equally likely to select any of the pieces 
of fruit in the box. 

In this example, the identity of the box that will be chosen is a random variable, 
which we shall denote by B. This random variable can take one of two possible 
values, namely r (corresponding to the red box) or b (corresponding to the blue 
box). Similarly, the identity of the fruit is also a random variable and will be denoted 
by F. It can take either of the values a (for apple) or o (for orange). 

To begin with, we shall define the probability of an event to be the fraction 
of times that event occurs out of the total number of trials, in the limit that the total 
number of trials goes to infinity. Thus the probability of selecting the red box is 4 j 10 

Figure 1.9 We use a simple example of two 
coloured boxes each containing fruit 
(apples shown in green and or­
anges shown in orange) to intro­
duce the basic ideas of probability. 
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Figure 1.10 We can derive the sum and product rules of probability by 
considering two random variables, X, which takes the values {Xi} where 
i = 1, ... , M, andY, which takes the values {YJ} where j = 1, ... , L. 
In this illustration we have M = 5 and L = 3. If we consider a total 
number N of instances of these variables, then we denote the number 
of instances where X= Xi andY= Yi by nii• which is the number of Yi 
points in the corresponding cell of the array. The number of points in 
column i, corresponding to X= x., is denoted by c.;, and the number of 
points in row j, corresponding to Y = YJ, is denoted by r i. 

nij 

and the probability of selecting the blue box is 6/10. We write these probabilities 
as p( B = r) = 4/10 and p( B = b) = 6/10. Note that, by definition, probabilities 
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they 
include all possible outcomes (for instance, in this example the box must be either 
red or blue), then we see that the probabilities for those events must sum to one. 

We can now ask questions such as: "what is the overall probability that the se­
lection procedure will pick an apple?", or "given that we have chosen an orange, 
what is the probability that the box we chose was the blue one?". We can answer 
questions such as these, and indeed much more complex questions associated with 
problems in pattern recognition, once we have equipped ourselves with the two el­
ementary rules of probability, known as the sum rule and the product rule. Having 
obtained these rules, we shall then return to our boxes of fruit example. 

In order to derive the rules of probability, consider the slightly more general ex­
ample shown in Figure 1.10 involving two random variables X andY (which could 
for instance be the Box and Fruit variables considered above). We shall suppose that 
X can take any of the values Xi where i = 1, ... , M, andY can take the values Yi 
where j = 1, ... , L. Consider a total of N trials in which we sample both of the 
variables X andY, and let the number of such trials in which X =Xi andY = Yi 
be nij. Also, let the number of trials in which X takes the value Xi (irrespective 
of the value that Y takes) be denoted by ci, and similarly let the number of trials in 
which Y takes the value Yi be denoted by ri. 

The probability that X will take the value Xi andY will take the value Yi is 
written p(X = Xi, Y = Yi) and is called the joint probability of X = Xi and 
Y = Yi. It is given by the number of points falling in the cell i,j as a fraction of the 
total number of points, and hence 

nij 
p(X=xi,Y=yi)=N. (1.5) 

Here we are implicitly considering the limit N -+ oo. Similarly, the probability that 
X takes the value Xi irrespective of the value of Y is written as p(X = xi) and is 
given by the fraction of the total number of points that fall in column i, so that 

(1.6) 

Because the number of instances in column i in Figure 1.10 is just the sum of the 
number of instances in each cell of that column, we have ci = Lj nij and therefore, 
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from (1.5) and (1.6), we have 

L 

p(X =Xi)= LP(X =Xi, y = Yj) (1.7) 

j=l 

which is the sum rule of probability. Note that p(X = xi) is sometimes called the 
marginal probability, because it is obtained by marginalizing, or summing out, the 
other variables (in this caseY). 

If we consider only those instances for which X = Xi, then the fraction of 
such instances for which Y = Yj is written p(Y = Yj IX = xi) and is called the 
conditional probability of Y = Yj given X = Xi. It is obtained by finding the 
fraction of those points in column i that fall in cell i,j and hence is given by 

(1.8) 

From (1.5), (1.6), and (1.8), we can then derive the following relationship 

nij nij . Ci 

N Ci N 
p(Y = Yj IX = xi)p(X = xi) (1.9) 

which is the product rule of probability. 
So far we have been quite careful to make a distinction between a random vari­

able, such as the box B in the fruit example, and the values that the random variable 
can take, for example r if the box were the red one. Thus the probability that B takes 
the value r is denoted p( B = r). Although this helps to avoid ambiguity, it leads 
to a rather cumbersome notation, and in many cases there will be no need for such 
pedantry. Instead, we may simply write p(B) to denote a distribution over the ran­
dom variable B, or p(r) to denote the distribution evaluated for the particular value 
r, provided that the interpretation is clear from the context. 

With this more compact notation, we can write the two fundamental rules of 
probability theory in the following form. 

The Rules of Probability 

sum rule p(X) = LP(X, Y) (1.10) 
y 

product rule p(X, Y) = p(YIX)p(X). (1.11) 

Here p(X, Y) is a joint probability and is verbalized as "the probability of X and 
Y". Similarly, the quantity p(YIX) is a conditional probability and is verbalized as 
"the probability of Y given X", whereas the quantity p(X) is a marginal probability 
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and is simply "the probability of X". These two simple rules form the basis for all 
of the probabilistic machinery that we use throughout this book. 

From the product rule, together with the symmetry property p(X, Y) = p(Y, X), 
we immediately obtain the following relationship between conditional probabilities 

(1.12) 

which is called Bayes' theorem and which plays a central role in pattern recognition 
and machine learning. Using the sum rule, the denominator in Bayes' theorem can 
be expressed in terms of the quantities appearing in the numerator 

p(X) = LP(XIY)p(Y). (1.13) 
y 

We can view the denominator in Bayes' theorem as being the normalization constant 
required to ensure that the sum of the conditional probability on the left-hand side of 
(1.12) over all values ofY equals one. 

In Figure 1.11, we show a simple example involving a joint distribution over two 
variables to illustrate the concept of marginal and conditional distributions. Here 
a finite sample of N = 60 data points has been drawn from the joint distribution 
and is shown in the top left. In the top right is a histogram of the fractions of data 
points having each of the two values of Y. From the definition of probability, these 
fractions would equal the corresponding probabilities p(Y) in the limit N --+ oo. We 
can view the histogram as a simple way to model a probability distribution given only 
a finite number of points drawn from that distribution. Modelling distributions from 
data lies at the heart of statistical pattern recognition and will be explored in great 
detail in this book. The remaining two plots in Figure 1.11 show the corresponding 
histogram estimates of p(X) andp(XIY = 1). 

Let us now return to our example involving boxes of fruit. For the moment, we 
shall once again be explicit about distinguishing between the random variables and 
their instantiations. We have seen that the probabilities of selecting either the red or 
the blue boxes are given by 

p(B = r) = 4/10 
p(B =b) = 6/10 

respectively. Note that these satisfy p(B = r) + p(B =b) = 1. 

(1.14) 

(1.15) 

Now suppose that we pick a box at random, and it turns out to be the blue box. 
Then the probability of selecting an apple is just the fraction of apples in the blue 
box which is 3/4, and so p(F =alB= b) = 3/4. In fact, we can write out all four 
conditional probabilities for the type of fruit, given the selected box 

p(F =alB= r) 
p(F = oiB = r) 

p(F=aiB=b) 

p(F=oiB=b) 

= 1/4 
3/4 

3/4 

= 1/4. 

(1.16) 

(1.17) 

(1.18) 

(1.19) 
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Figure 1.11 An illustration of a distribution over two variables, X, which takes 9 possible values, andY, which 
takes two possible values. The top left figure shows a sample of 60 points drawn from a joint probability distri­
bution over these variables. The remaining figures show histogram estimates of the marginal distributions p(X) 
and p(Y), as well as the conditional distribution p(X\Y = 1) corresponding to the bottom row in the top left 

figure. 

Again, note that these probabilities are normalized so that 

p(F = a\B = r) + p(F = o\B = r) = 1 (1.20) 

and similarly 
p(F = a\B =b)+ p(F = o\B =b)= 1. (1.21) 

We can now use the sum and product rules of probability to evaluate the overall 

probability of choosing an apple 

p(F =a) p(F = a\B = r)p(B = r) + p(F = a\B = b)p(B =b) 
1 4 3 6 11 

= 4 X 10 + 4 X 10 = 20 (1.
22

) 

from which it follows, using the sum rule, thatp(F = o) = 1- 11/20 = 9/20. 
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Suppose instead we are told that a piece of fruit has been selected and it is an 
orange, and we would like to know which box it came from. This requires that 
we evaluate the probability distribution over boxes conditioned on the identity of 
the fruit, whereas the probabilities in (1.16)-(1.19) give the probability distribution 
over the fruit conditioned on the identity of the box. We can solve the problem of 
reversing the conditional probability by using Bayes' theorem to give 

p(B = riF = o) = p(F = ofB = r)p(B = r) = ~ x .i_ x 20 = ~ 
p(F=o) 4 10 9 3 

(1.23) 

From the sum rule, it then follows thatp(B = bfF = o) = 1- 2/3 = 1/3. 
We can provide an important interpretation of Bayes' theorem as follows. If 

we had been asked which box had been chosen before being told the identity of 
the selected item of fruit, then the most complete information we have available is 
provided by the probability p(B). We call this the prior probability because it is the 
probability available before we observe the identity of the fruit. Once we are told that 
the fruit is an orange, we can then use Bayes' theorem to compute the probability 
p(BfF), which we shall call the posterior probability because it is the probability 
obtained after we have observed F. Note that in this example, the prior probability 
of selecting the red box was 4/10, so that we were more likely to select the blue box 
than the red one. However, once we have observed that the piece of selected fruit is 
an orange, we find that the posterior probability of the red box is now 2/3, so that 
it is now more likely that the box we selected was in fact the red one. This result 
accords with our intuition, as the proportion of oranges is much higher in the red box 
than it is in the blue box, and so the observation that the fruit was an orange provides 
significant evidence favouring the red box. In fact, the evidence is sufficiently strong 
that it outweighs the prior and makes it more likely that the red box was chosen 
rather than the blue one. 

Finally, we note that if the joint distribution of two variables factorizes into the 
product of the marginals, so that p(X, Y) = p(X)p(Y), then X and Y are said to 
be independent. From the product rule, we see that p(YfX) = p(Y), and so the 
conditional distribution of Y given X is indeed independent of the value of X. For 
instance, in our boxes of fruit example, if each box contained the same fraction of 
apples and oranges, then p(FfB) = P(F), so that the probability of selecting, say, 
an apple is independent of which box is chosen. 

1.2.1 Probability densities 
As well as considering probabilities defined over discrete sets of events, we 

also wish to consider probabilities with respect to continuous variables. We shall 
limit ourselves to a relatively informal discussion. If the probability of a real-valued 
variable x falling in the interval (x,x + 8x) is given by p(x)8x for 8x --+ 0, then 
p(x) is called the probability density over x. This is illustrated in Figure 1.12. The 
probability that x will lie in an interval (a, b) is then given by 

p(x E (a, b)) = 1b p(x) dx. (1.24) 
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Figure 1.12 The concept of probability for 
discrete variables can be ex­
tended to that of a probability 
density p(x) over a continuous 
variable x and is such that the 
probability of x lying in the inter­
val (x,x+ox) is given byp(x)ox 
for ox --. 0. The probability 
density can be expressed as the 
derivative of a cumulative distri­
bution function P(x). 

P(x) 

Exercise 1.4 

ox 
X 

Because probabilities are nonnegative, and because the value of x must lie some­
where on the real axis, the probability density p( x) must satisfy the two conditions 

p(x) ~ 0 1: p(x) dx = 1. 

(1.25) 

(1.26) 

Under a nonlinear change of variable, a probability density transforms differently 
from a simple function, due to the Jacobian factor. For instance, if we consider 
a change of variables x = g(y), then a function f(x) becomes f(y) = f(g(y)). 
Now consider a probability density Px(x) that corresponds to a density Py(y) with 
respect to the new variable y, where the suffices denote the fact that Px ( x) and Py (y) 
are different densities. Observations falling in the range (x, x +ox) will, for small 
values of ox, be transformed into the range (y, y + oy) where Px(x)ox ':::' Py(y)oy, 
and hence 

Py(y) = Px(x) I:= I 
= Px(g(y)) /g'(y)/. (1.27) 

One consequence of this property is that the concept of the maximum of a probability 
density is dependent on the choice of variable. 

The probability that x lies in the interval ( -oo, z) is given by the cumulative 
distribution function defined by 

P(z) = 1~ p(x) dx (1.28) 

which satisfies P'(x) = p(x), as shown in Figure 1.12. 

If we have several continuous variables x 1 , •.. , XD, denoted collectively by the 
vector x, then we can define a joint probability density p(x) = p(x

1
, ... , xD) such 
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that the probability of x falling in an infinitesimal volume ox containing the point x 
is given by p(x)ox. This multivariate probability density must satisfy 

p(x) ;? 0 

J p(x)dx 1 

(1.29) 

(1.30) 

in which the integral is taken over the whole of x space. We can also consider joint 
probability distributions over a combination of discrete and continuous variables. 

Note that if x is a discrete variable, then p( x) is sometimes called a probability 
mass function because it can be regarded as a set of 'probability masses' concentrated 
at the allowed values of x. 

The sum and product rules of probability, as well as Bayes' theorem, apply 
equally to the case of probability densities, or to combinations of discrete and con­
tinuous variables. For instance, if x and y are two real variables, then the sum and 
product rules take the form 

p(x) 

p(x, y) 

j p(x, y) dy 

p(yix)p(x). 

(1.31) 

(1.32) 

A formal justification of the sum and product rules for continuous variables (Feller, 
1966) requires a branch of mathematics called measure theory and lies outside the 
scope of this book. Its validity can be seen informally, however, by dividing each 
real variable into intervals of width ~ and considering the discrete probability dis­
tribution over these intervals. Taking the limit ~ ---+ 0 then turns sums into integrals 
and gives the desired result. 

1.2.2 Expectations and covariances 
One of the most important operations iQ_volving probabilities is that of finding 

weighted averages of functions. The average value of some function f ( x) under a 
probability distribution p( x) is called the expectation off ( x) and will be denoted by 
JE[f]. For a discrete distribution, it is given by 

JE[f] = LP(x)f(x) (1.33) 
X 

so that the average is weighted by the relative probabilities of the different values 
of x. In the case of continuous variables, expectations are expressed in terms of an 
integration with respect to the corresponding probability density 

JE[f] = J p(x)f(x) dx. (1.34) 

In either case, if we are given a finite number N of points drawn from the probability 
distribution or probability density, then the expectation can be approximated as a 
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Exercise 1.5 

Exercise 1.6 

finite sum over these points 

1 N 
lE[f] ~ N 2::: f(xn)· 

n=l 

(1.35) 

We shall make extensive use of this result when we discuss sampling methods in 
Chapter 11. The approximation in (1.35) becomes exact in the limit N -too. 

Sometimes we will be considering expectations of functions of several variables, 
in which case we can use a subscript to indicate which variable is being averaged 

over, so that for instance 
lEx[f(x, y)] (1.36) 

denotes the average of the function f(x, y) with respect to the distribution of x. Note 

that lEx [f ( x, y)] will be a function of y. 
We can also consider a conditional expectation with respect to a conditional 

distribution, so that (1.37) 

X 

with an analogous definition for continuous variables. 
The variance of f ( x) is defined by 

var[f] = lE [(f(x) -JE[f(x)])
2

] 
(1.38) 

and provides a measure of how much variability there is in f ( x) around its mean 
value JE[f(x)]. Expanding out the square, we see that the variance can also be written 

in terms of the expectations of f ( x) and f ( x) 
2 

var[f] = lE[f(x) 2]-lE[f(xW. 
(1.39) 

In particular, we can consider the variance of the variable x itself, which is given by 

var[x] = JE[x2
] - JE[xf. 

For two random variables X andy, the covariance is defined by 

cov[x, y] = lEx,y [{ x -lE[x]} {y -JE[y]}] 

= lEx,y[xy] -lE[x]lE[y] 

(1.40) 

(1.41) 

which expresses the extent to which x and y vary together. If x and y are indepen­

dent, then their covariance vanishes. 
In the case of two vectors of random variables x andy, the covariance is a matrix 

cov[x, y] = lEx,y [ { x- lE[x]}{yT - lE[yT]} J 
= lEx,y[xyT]-lE[x]lE[yT]. 

(1.42; 

If we consider the covariance of the components of a vector x with each other, ther 

we use a slightly simpler notation cov[x] = cov[x, x]. 1 
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1.2.3 Bayesian probabilities 

So far in this chapter, we have viewed probabilities in terms of the frequencies 
of random, repeatable events. We shall refer to this as the classical or frequentist 
interpretation of probability. Now we tum to the more general Bayesian view, in 
which probabilities provide a quantification of uncertainty. 

Consider an uncertain event, for example whether the moon was once in its own 
orbit around the sun, or whether the Arctic ice cap will have disappeared by the end 
of the century. These are not events that can be repeated numerous times in order 
to define a notion of probability as we did earlier in the context of boxes of fruit. 
Nevertheless, we will generally have some idea, for example, of how quickly we 
think the polar ice is melting. If we now obtain fresh evidence, for instance from a 
new Earth observation satellite gathering novel forms of diagnostic information, we 
may revise our opinion on the rate of ice loss. Our assessment of such matters will 
affect the actions we take, for instance the extent to which we endeavour to reduce 
the emission of greenhouse gasses. In such circumstances, we WOI.lld like to be able 
to quantify our expression of uncertainty and make precise revisions of uncertainty in 
the light of new evidence, as well as subsequently to be able to take optimal actions 
or decisions as a consequence. This can all be achieved through the elegant, and very 
general, Bayesian interpretation of probability. 

The use of probability to represent uncertainty, however, is not an ad-hoc choice, 
but is inevitable if we are to respect common sense while making rational coherent 
inferences. For instance, Cox (1946) showed that if numerical values are used to 
represent degrees of belief, then a simple set of axioms encoding common sense 
properties of such beliefs leads uniquely to a set of rules for manipulating degrees of 
belief that are equivalent to the sum and product rules of probability. This provided 
the first rigorous proof that probability theory could be regarded as an extension of 
Boolean logic to situations involving uncertainty (Jaynes, 2003). Numerous other 
authors have proposed different sets of properties or axioms that such measures of 
uncertainty should satisfy (Ramsey, 1931; Good, 1950; Savage, 1961; deFinetti, 
1970; Lindley, 1982). In each case, the resulting numerical quantities behave pre­
cisely according to the rules of probability. It is therefore natural to refer to these 
quantities as (Bayesian) probabilities. 

In the field of pattern recognition, too, it is helpful to have a more general no-
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tion of probability. Consider the example of polynomial curve fitting discussed in 
Section 1.1. It seems reasonable to apply the frequentist notion of probability to the 
random values of the observed variables tn· However, we would like to address and 
quantify the uncertainty that surrounds the appropriate choice for the model param­
eters w. We shall see that, from a Bayesian perspective, we can use the machinery 
of probability theory to describe the uncertainty in model parameters such as w, or 
indeed in the choice of model itself. 

Bayes' theorem now acquires a new significance. Recall that in the boxes of fruit 
example, the observation of the identity of the fruit provided relevant information 
that altered the probability that the chosen box was the red one. In that example, 
Bayes' theorem was used to convert a prior probability into a posterior probability 
by incorporating the evidence provided by the observed data. As we shall see in 
detail later, we can adopt a similar approach when making inferences about quantities 
such as the parameters w in the polynomial curve fitting example. We capture our 
assumptions about w, before observing the data, in the form of a prior probability 
distribution p(w). The effect of the observed data V = {t1, ... , tN} is expressed 
through the conditional probability p(Vjw), and we shall see later, in Section 1.2.5, 
how this can be represented explicitly. Bayes' theorem, which takes the form 

( IV)= p(Vjw)p(w) 
P w p(V) 

(1.43) 

then allows us to evaluate the uncertainty in w after we have observed V in the form 
of the posterior probability p(w!V). 

The quantity p(Vjw) on the right-hand side of Bayes' theorem is evaluated for 
the observed data set V and can be viewed as a function of the parameter vector 
w, in which case it is called the likelihood function. It expresses how probable the 
observed data set is for different settings of the parameter vector w. Note that the 
likelihood is not a probability distribution over w, and its integral with respect to w 
does not (necessarily) equal one. 

Given this definition of likelihood, we can state Bayes' theorem in words 

posterior <X likelihood x prior (1.44) 

where all of these quantities are viewed as functions of w. The denominator in 
(1.43) is the normalization constant, which ensures that the posterior distribution 
on the left-hand side is a valid probability density and integrates to one. Indeed, 
integrating both sides of (1.43) with respect tow, we can express the denominator 
in Bayes' theorem in terms of the prior distribution and the likelihood function 

p(V) = J p(Vjw)p(w) dw. (1.45) 

In both the Bayesian and frequentist paradigms, the likelihood function p(Vjw) 
plays a central role. However, the manner in which it is used is fundamentally dif­
ferent in the two approaches. In a frequentist setting, w is considered to be a fixed 
parameter, whose value is determined by some form of 'estimator', and error bars 
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on this estimate are obtained by considering the distribution of possible data sets V. 
By contrast, from the Bayesian viewpoint there is only a single data set V (namely 
the one that is actually observed), and the uncertainty in the parameters is expressed 
through a probability distribution over w. 

A widely used frequentist estimator is maximum likelihood, in which w is set 
to the value that maximizes the likelihood function p(VIw). This corresponds to 
choosing the value of w for which the probability of the observed data set is maxi­
mized. In the machine learning literature, the negative log of the likelihood function 
is called an error function. Because the negative logarithm is a monotonically de­
creasing function, maximizing the likelihood is equivalent to minimizing the error. 

One approach to determining frequentist error bars is the bootstrap (Efron, 1979; 
Hastie et al., 2001), in which multiple data sets are created as follows. Suppose our 
original data set consists of N data points X= {x1 , ... , XN }. We can create a new 
data set XB by drawing N points at random from X, with replacement, so that some 
points in X may be replicated in XB, whereas other points in X may be absent from 
XB. This process can be repeated L times to generate L data sets each of size Nand 
each obtained by sampling from the original data set X. The statistical accuracy of 
parameter estimates can then be evaluated by looking at the variability of predictions 
between the different bootstrap data sets. 

One advantage of the Bayesian viewpoint is that the inclusion of prior knowl­
edge arises naturally. Suppose, for instance, that a fair-looking coin is tossed three 
times and lands heads each time. A classical maximum likelihood estimate of the 
probability of landing heads would give 1, implying that all future tosses will land 
heads! By contrast, a Bayesian approach with any reasonable prior will lead to a 
much less extreme conclusion. 

There has been much controversy and debate associated with the relative mer­
its of the frequentist and Bayesian paradigms, which have not been helped by the 
fact that there is no unique frequentist, or even Bayesian, viewpoint. For instance, 
one common criticism of the Bayesian approach is that the prior distribution is of­
ten selected on the basis of mathematical convenience rather than as a reflection of 
any prior beliefs. Even the subjective nature of the conclusions through their de­
pendence on the choice of prior is seen by some as a source of difficulty. Reducing 
the dependence on the prior is one motivation for so-called noninformative priors. 
However, these lead to difficulties when comparing different models, and indeed 
Bayesian methods based on poor choices of prior can give poor results with high 
confidence. Frequentist evaluation methods offer some protection from such prob­
lems, and techniques such as cross-validation remain useful in areas such as model 
comparison. 

This book places a strong emphasis on the Bayesian viewpoint, reflecting the 
huge growth in the practical importance of Bayesian methods in the past few years, 
while also discussing useful frequentist concepts as required. 

Although the Bayesian framework has its origins in the 18th century, the prac­
tical application of Bayesian methods was for a long time severely limited by the 
difficulties in carrying through the full Bayesian procedure, particularly the need to 
marginalize (sum or integrate) over the whole of parameter space, which, as we shall 
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see, is required in order to make predictions or to compare different models. The 
development of sampling methods, such as Markov chain Monte Carlo (discussed in 
Chapter 11) along with dramatic improvements in the speed and memory capacity 
of computers, opened the door to the practical use of Bayesian techniques in an im­
pressive range of problem domains. Monte Carlo methods are very flexible and can 
be applied to a wide range of models. However, they are computationally intensive 
and have mainly been used for small-scale problems. 

More recently, highly efficient detenninistic approximation schemes such as 
variational Bayes and expectation propagation (discussed in Chapter 10) have been 
developed. These offer a complementary alternative to sampling methods and have 
allowed Bayesian techniques to be used in large-scale applications (Blei et al., 2003). 

1.2.4 The Gaussian distribution 
We shall devote the whole of Chapter 2 to a study of various probability dis­

tributions and their key properties. It is convenient, however, to introduce here one 
of the most important probability distributions for continuous variables, called the 
normal or Gaussian distribution. We shall make extensive use of this distribution in 
the remainder of this chapter and indeed throughout much of the book. 

For the case of a single real-valued variable x, the Gaussian distribution is de­
fined by 

(1.46) 

which is governed by two parameters: J.t, called the mean, and CJ
2

, called the vari­
ance. The square root of the variance, given by CJ, is called the standard deviation, 
and the reciprocal of the variance, written as f3 = 1/ CJ

2
, is called the precision. We 

shall see the motivation for these terms shortly. Figure 1.13 shows a plot of the 
Gaussian distribution. 

From the form of ( 1.46) we see that the Gaussian distribution satisfies 

(1.47) 

Also it is straightforward to show that the Gaussian is normalized, so that 
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Figure 1.13 Plot of the univariate Gaussian 

Exercise 1.8 

Exercise 1.9 

showing the mean fJ- and the N(xiJ.L, a-2 ) 
standard deviation a-. 

Thus (1.46) satisfies the two requirements for a valid probability density. 

X 

(1.48) 

We can readily find expectations of functions of x under the Gaussian distribu­
tion. In particular, the average value of x is given by 

(1.49) 

Because the parameter J.L represents the average value of x under the distribution, it 
is referred to as the mean. Similarly, for the second order moment 

(1.50) 

From (1.49) and (1.50), it follows that the variance of xis given by 

(1.51) 

and hence rJ2 is referred to as the variance parameter. The maximum of a distribution 
is known as its mode. For a Gaussian, the mode coincides with the mean. 

We are also interested in the Gaussian distribution defined over a D-dimensional 
vector x of continuous variables, which is given by 

(1.52) 

where the D-dimensional vector J.L is called the mean, the D x D matrix :E is called 
the covariance, and I:EI denotes the determinant of :E. We shall make use of the 
multivariate Gaussian distribution briefly in this chapter, although its properties will 
be studied in detail in Section 2.3. 
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Figure 1.14 Illustration of the likelihood function for 
a Gaussian distribution, shown by the 
red curve. Here the black points de- p(x) 
note a data set of values {xn}, and 

Section 1.2.5 

the likelihood function given by (1.53) 
corresponds to the product of the blue 
values. Maximizing the likelihood in­
volves adjusting the mean and vari­
ance of the Gaussian so as to maxi­
mize this product. 

X 

Now suppose that we have a data set of observations x = ( x1, ... , x N) T, rep­
resenting N observations of the scalar variable x. Note that we are using the type­
face x to distinguish this from a single observation of the vector-valued variable 
(x1, ... , XD)T, which we denote by x. We shall suppose that the observations are 
drawn independently from a Gaussian distribution whose mean J.£ and variance 0" 2 

are unknown, and we would like to determine these parameters from the data set. 
Data points that are drawn independently from the same distribution are said to be 
independent and identically distributed, which is often abbreviated to i.i.d. We have 
seen that the joint probability of two independent events is given by the product of 
the marginal probabilities for each event separately. Because our data set X is i.i.d., 
we can therefore write the probability of the data set, given J.£ and 0"

2
, in the form 

N 

p(XIJ.£, 0"
2

) = IT N ( Xn IJ.£, 0"
2

) • (1.53) 
n=l 

When viewed as a function of J.£ and 0"2 , this is the likelihood function for the Gaus­
sian and is interpreted diagrammatically in Figure 1.14. 

One common criterion for determining the parameters in a probability distribu­
tion using an observed data set is to find the parameter values that maximize the 
likelihood function. This might seem like a strange criterion because, from our fore­
going discussion of probability theory, it would seem more natural to maximize the 
probability of the parameters given the data, not the probability of the data given the 
parameters. In fact, these two criteria are related, as we shall discuss in the context 
of curve fitting. 

For the moment, however, we shall determine values for the unknown parame­
ters J.£ and 0"2 in the Gaussian by maximizing the likelihood function (1.53). In prac­
tice, it is more convenient to maximize the log of the likelihood function. Because 
the logarithm is a monotonically increasing function of its argument, maximization 
of the log of a function is equivalent to maximization of the function itself. Taking 
the log not only simplifies the subsequent mathematical analysis, but it also helps 
numerically because the product of a large number of small probabilities can easily 
underflow the numerical precision of the computer, and this is resolved by computing 
instead the sum of the log probabilities. From (1.46) and (1.53), the log likelihood 
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function can be written in the form 

N 

lnp (xiJ.L, a-2
) = --

1
- "'(xn- J.L) 2 - N lna-2 - N ln(27r) 

2a-2 ~ 2 2 . 
n=l 

(1.54) 

Maximizing (1.54) with respect to J.l, we obtain the maximum likelihood solution 
given by 

1 N 
J.lML = N LXn 

n=l 

(1.55) 

which is the sample mean, i.e., the mean of the observed values {xn}· Similarly, 
maximizing (1.54) with respect to a-2 , we obtain the maximum likelihood solution 
for the variance in the form 

(1.56) 

which is the sample variance measured with respect to the sample mean /LML· Note 
that we are performing, a joint maximization of ( 1.54) with respect to J.l and a-2, but 
in the case of the Gaussian distribution the solution for J.l decouples from that for a-2 

so that we can first evaluate (1.55) and then subsequently use this result to evaluate 
(1.56). 

Later in this chapter, and also in subsequent chapters, we shall highlight the sig­
nificant limitations of the maximum likelihood approach. Here we give an indication 
of the problem in the context of our solutions for the maximum likelihood param­
eter settings for the univariate Gaussian distribution. In particular, we shall show 
that the maximum likelihood approach systematically underestimates the variance 
of the distribution. This is an example of a phenomenon called bias and is related 
to the problem of over-fitting encountered in the context of polynomial curve fitting. 
We first note that the maximum likelihood solutions /LML and a-~L are functions of 
the data set values x 1 , ... , XN. Consider the expectations of these quantities with 
respect to the data set values, which themselves come from a Gaussian distribution 
with parameters J.l and a-2. It is straightforward to show that 

(1.57) 

(1.58) 

so that on average the maximum likelihood estimate will obtain the correct mean but 
will underestimate the true variance by a factor (N- 1)/N. The intuition behind 
this result is given by Figure 1.15. 

From (1.58) it follows that the following estimate for the variance parameter is 
unbiased 

(1.59) 
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Figure 1.15 Illustration of how bias arises in using max­
imum likelihood to determine the variance 
of a Gaussian. The green curve shows 
the true Gaussian distribution from which 
data is generated, and the three red curves 
show the Gaussian distributions obtained 
by fitting to three data sets, each consist­
ing of two data points shown in blue, us­
ing the maximum likelihood results (1.55) 
and (1.56). Averaged across the three data 
sets, the mean is correct, but the variance 
is systematically under-estimated because 
it is measured relative to the sample mean 
and not relative to the true mean. 

(a) 

~ 
(b)~ 

Section 1.1 

(c) 

In Section 10.1.3, we shall see how this result arises automatically when we adopt a 
Bayesian approach. 

Note that the bias of the maximum likelihood solution becomes less significant 
as the number N of data points increases, and in the limit N -t oo the maximum 
likelihood solution for the variance equals the true variance of the distribution that 
generated the data. In practice, for anything other than small N, this bias will not 
prove to be a serious problem. However, throughout this book we shall be interested 
in more complex models with many parameters, for which the bias problems asso­
ciated with maximum likelihood will be much more severe. In fact, as we shall see, 
the issue of bias in maximum likelihood lies at the root of the over-fitting problem 
that we encountered earlier in the context of polynomial curve fitting. 

1.2.5 Curve fitting re-visited 
We have seen how the problem of polynomial curve fitting can be expressed in 

terms of error minimization. Here we return .to the curve fitting example and view it 
from a probabilistic perspective, thereby gaining some insights into error functions 
and regularization, as well as taking us towards a full Bayesian treatment. 

The goal in the curve fitting problem is to be able to make predictions for the 
target variable t given some new value of the input variable x on the basis of a set of 
training data comprising N input values x = ( x 1 , ... , x N) T and their corresponding 
target values t = ( t 1 , ... , t N) T. We can express our uncertainty over the value of 
the target variable using a probability distribution. For this purpose, we shall assume 
that, given the value of x, the corresponding value of t has a Gaussian distribution 
with a mean equal to the value y(x, w) of the polynomial curve given by (1.1). Thus 
we have 

p(tix, w, /3) = N (tiy(x, w), /3- 1
) (1.60) 

where, for consistency with the notation in later chapters, we have defined a preci­
sion parameter f3 corresponding to the inverse variance of the distribution. This is 
illustrated schematically in Figure 1.16. 
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Figure 1.16 Schematic illustration of a Gaus­
sian conditional distribution for t given x given by 
(1.60), in which the mean is given by the polyno­
mial function y(x, w), and the precision is given 
by the parameter {3, which is related to the vari­
ance by {3- 1 = cr2 . 

t 

y(xo, w) 

y(x, w) 

xo X 

We now use the training data {X, t} to detennine the values of the unknown 
parameters w and fJ by maximum likelihood. If the data are assumed to be drawn 
independently from the distribution (1.~0), then the likelihood function is given by 

N 

p(tlx,w,(J) = IlN(tniY(Xn,w),fJ- 1
). (1.61) 

n=l 

As we did in the case of the simple Gaussian distribution earlier, it is convenient to 
maximize the logarithm of the likelihood function. Substituting for the form of the 
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the 
form 

fJ N N N 
lnp(tlx, w, fJ) = - 2 :L {y(xn, w)- tn} 2 + 2lnfJ- 2ln(27r). (1.62) 

n=l 

Consider first the detennination of the maximum likelihood solution for the polyno­
mial coefficients, which will be denoted by WML· These are detennined by maxi­
mizing (1.62) with respect tow. For this purpose, we can omit the last two terms 
on the right-hand side of (1.62) because they do not depend on w. Also, we note 
that scaling the log likelihood by a positive constant coefficient does not alter the 
location of the maximum with respect to w, and so we can replace the coefficient 
fJ /2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently 
minimize the negative log likelihood. We therefore see that maximizing likelihood is 
equivalent, so far as detennining w is concerned, to minimizing the sum-of-squares 
error function defined by (1.2). Thus the sum-of-squares error function has arisen as 
a consequence of maximizing likelihood under the assumption of a Gaussian noise 
distribution. 

We can also use maximum likelihood to determine the precision parameter fJ of 
the Gaussian conditional distribution. Maximizing (1.62) with respect to fJ gives 

1 1 N 2 
-fJ = N :L {y(xn, WML) - tn} . 

ML n=l 

(1.63) 
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Again we can first determine the parameter vector WML governing the mean and sub­
sequently use this to find the precision f3ML as was the case for the simple Gaussian 

distribution. 
Having determined the parameters wand {3, we can now make predictions for 

new values of x. Because we now have a probabilistic model, these are expressed 
in terms of the predictive distribution that gives the probability distribution over t, 
rather than simply a point estimate, and is obtained by substituting the maximum 

likelihood parameters into (1.60) to give 

p(t\x, WML• f3ML) = N (t\y(x, WML), !3:Mt). (1.64) 

Now let us take a step towards a more Bayesian approach and introduce a prior 
distribution over the polynomial coefficients w. For simplicity, let us consider a 

Gaussian distribution of the form 

(1.65) 

where a is the precision of the distribution, and M + 1 is the total number of elements 
in the vector w for an Mth order polynomial. Variables such as a, which control 
the distribution of model parameters, are called hyperparameters. Using Bayes' 
theorem, the posterior distribution for w is proportional to the product of the prior 

distribution and the likelihood function 

p(w\X, t, a, ,6) ex p(t\x, w, ,G)p(w\a). 
(1.66) 

We can now determine w by finding the most probable value of w given the data, 
in other words by maximizing the posterior distribution. This technique is called 
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and 
combining with (1.62) and (1.65), we find that the maximum of the posterior is 

given by the minimum of 

(1.67) 

Thus we see that maximizing the posterior distribution is equivalent to minimizing 
the regularized sum-of-squares error function encountered earlier in the form (1.4), 

with a regularization parameter given by A= a/ ,6. 

1.2.6 Bayesian curve fitting 
Although we hiwe included a prior distribution p(w\a), we are so far still mak­

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In 
a fully Bayesian approach, we should consistently apply the sum and product rules 
of probability, which requires, as we shall see shortly, that we integrate over all val­
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern 

recognition. 
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In the curve fitting problem, we are given the training data x and t, along with 
a new test point x, and our goal is to predict the value of t. We therefore wish 
to evaluate the predictive distribution p(tlx, x, t). Here we shall assume that the 
parameters a and j3 are fixed and known in advance (in later chapters we shall discuss 
how such parameters can be inferred from data in a Bayesian setting). 

A Bayesian treatment simply corresponds to a consistent application of the sum 
and product rules of probability, which allow the predictive distribution to be written 
in the form 

p(tlx,x, t) = j p(tlx, w)p(wlx, t) dw. (1.68) 

Here p(tix, w) is given by (1.60), and we have onptted the dependence on a and 
(3 to simplify the notation. Here p(wlx, t) is the posterior distribution over param­
eters, and can be found by normalizing the right-hand side of (1.66). We shall see 
in Section 3.3 that, for problems such as the curve-fitting example, this posterior 
distribution is a Gaussian and can be evaluated analytically. Similarly, the integra­
tion in (1.68) can also be performed analytically with the result that the predictive 
distribution is given by a Gaussian of the form 

p(tix,x, t) = N (tlm(x), s2 (x)) (1.69) 

where the mean and variance are given by 

N 

m(x) j3<fJ(x)TS L <fJ(xn)tn (1.70) 
n=l 

(1.71) 

Here the matrix S is given by 

N 

s-l = al + j3 L <fJ(xn)<fJ(x)T (1.72) 
n=l 

where I is the unit matrix, and we have defined the vector ¢( x) with elements 
</Ji(x) =xi fori= 0, ... , M. 

We see that the variance, as well as the mean, of the predictive distribution in 
(1.69) is dependent on x. The first term in (1.71) represents the uncertainty in the 
predicted value oft due to the noise on the target variables and was expressed already 
in the maximum likelihood predictive distribution (1.64) through f3:Mt· However, the 
second term arises from the uncertainty in the parameters w and is a consequence 
of the Bayesian treatment. The predictive distribution for the synthetic sinusoidal 
regression problem is illustrated in Figure 1.17. 
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Figure 1.17 The predictive distribution result­
ing from a Bayesian treatment of 
polynomial curve fitting using an 
M = 9 polynomial, with the fixed 
parameters a= 5 x 10-3 and (3 = t 
11.1 (corresponding to the known 
noise variance), in which the red 
curve denotes the mean of the 0 
predictive distribution and the red 
region corresponds to ±1 stan­
dard deviation around the mean. 

1.3. Model Selection 

-1 

0 
X 
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In our example of polynomial curve fitting using least squares, we saw that there was 
an optimal order of polynomial that gave the best generalization. The order of the 
polynomial controls the number of free parameters in the model and thereby governs 
the model complexity. With regularized least squares, the regularization coefficient 
>. also controls the effective complexity of the model, whereas for more complex 
models, such as mixture distributions or neural networks there may be multiple pa­
rameters governing complexity. In a practical application, we need to determine 
the values of such parameters, and the principal objective in doing so is usually to 
achieve the best predictive performance on new data. Furthermore, as well as find­
ing the appropriate values for complexity parameters within a given model, we may 
wish to consider a range of different types of model in order to find the best one for 
our particular application. 

We have already seen that, in the maximum likelihood approach, the perfor­
mance on the training set is not a good indicator of predictive performance on un­
seen data due to the problem of over-fitting. If data is plentiful, then one approach is 
simply to use some of the available data to train a range of models, or a given model 
with a range of values for its complexity parameters, and then to compare them on 
independent data, sometimes called a validation set, and select the one having the 
best predictive performance. If the model design is iterated many times using a lim­
ited size data set, then some over-fitting to the validation data can occur and so it may 
be necessary to keep aside a third test set on which the performance of the selected 
model is finally evaluated. 

In many applications, however, the supply of data for training and testing will be 
limited, and in order to build good models, we wish to use as much of the available 
data as possible for training. However, if the validation set is small, it will give a 
relatively noisy estimate of predictive performance. One solution to this dilemma is 
to use cross-validation, which is illustrated in Figure 1.18. This allows a proportion 
( S - 1) j S of the available data to be used for training while making use of all of the 
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Figure 1.18 The technique of S-fold cross-validation, illus­
trated here for the case of S = 4, involves tak­
ing the available data and partitioning it into S 
groups (in the simplest case these are of equal 
size). Then S- 1 of the groups are used to train 
a set of models that are then evaluated on the re­
maining group. This procedure is then repeated 
for all S possible choices for the held-out group, 
indicated here by the red blocks, and the perfor­
mance scores from the S runs are then averaged. 

run 1 

run 2 

~- I run3 

I ~- run4 

data to assess performance. When data is particularly scarce, it may be appropriate 
to consider the caseS= N, where N is the total number of data points, which gives 
the leave-one-out technique. 

One major drawback of cross-validation is that the number of training runs that 
must be performed is increased by a factor of S, and this can prove problematic for 
models in which the training is itself computationally expensive. A further problem 
with techniques such as cross-validation that use separate data to assess performance 
is that we might have multiple complexity parameters for a single model (for in­
stance, there might be several regularization parameters). Exploring combinations 
of settings for such parameters could, in the worst case, require a number of training 
runs that is exponential in the number of parameters. Clearly, we need a better ap­
proach. Ideally, this should rely only on the training data and should allow multiple 
hyperparameters and model types to be compared in a single training run. We there­
fore need to find a measure of performance which depends only on the training data 
and which does not suffer from bias due to over-fitting. 

Historically various 'information criteria' have been proposed that attempt to 
correct for the bias of maximum likelihoo<f by the addition of a penalty term to 
compensate for the over-fitting of more complex models. For example, the Akaike 
information criterion, or AIC (Akaike, 1974), chooses the model for which the quan­
tity 

(1.73) 

is largest. Here p('DiwML) is the best-fit log likelihood, and M is the number of 
adjustable parameters in the model. A variant of this quantity, called the Bayesian 
information criterion, or BIC, will be discussed in Section 4.4.1. Such criteria do 
not take account of the uncertainty in the model parameters, however, and in practice 
they tend to favour overly simple models. We therefore tum in Section 3.4 to a fully 
Bayesian approach where we shall see how complexity penalties arise in a natural 
and principled way. 

1.4. The Curse of Dimensionality -------
In the polynomial curve fitting example we had just one input variable x. For prac­
tical applications of pattern recognition, however, we will have to deal with spaces 
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Figure 1.19 Scatter plot of the oil flow data 
for input variables xs and x1. in 
which red denotes the 'homoge­
nous' class, green denotes the 
'annular' class, and blue denotes 
the 'laminar' class. Our goal is 
to classify the new test point de­
noted by • x'. 

0.25 0.5 

of high dimensionality comprising many input variables. As we now discuss, this 
poses some serious challenges and is an important factor influencing the design of 
pattern recognition techniques. 

In order to illustrate the problem we consider a synthetically generated data set 
representing measurements taken from a pipeline containing a mixture of oil, wa­
ter, and gas (Bishop and James, 1993). These three materials can be present in one 
of three different geometrical configurations known as 'homogenous', 'annular', and 
'laminar', and the fractions of the three materials can also vary. Each data point com­
prises a 12-dimensional input vector consisting of measurements taken with gamma 
ray densitometers that measure the attenuation of gamma rays passing along nar­
row beams through the pipe. This data set is described in detail in Appendix A. 
Figure 1.19 shows 100 points from this data set on a plot showing two of the mea­
surements x6 and x7 (the remaining ten input values are ignored for the purposes of 
this illustration). Each data point is labelled according to which of the three geomet­
rical classes it belongs to, and our goal is to use this data as a training set in order to 
be able to classify a new observation (x6 , x 7 ), such as the one denoted by the cross 
in Figure 1.19. We observe that the cross is surrounded by numerous red points, and 
so we might suppose that it belongs to the red class. However, there are also plenty 
of green points nearby, so we might think that it could instead belong to the green 
class. It seems unlikely that it belongs to the blue class. The intuition here is that the 
identity of the cross should be determined more strongly by nearby points from the 
training set and less strongly by more distant points. In fact, this intuition turns out 
to be reasonable and will be discussed more fully in later chapters. 

How can we turn this intuition into a learning algorithm? One very simple ap­
proach would be to divide the input space into regular cells, as indicated in Fig­
ure 1.20. When we are given a test point and we wish to predict its class, we first 
decide which cell it belongs to, and we then find all of the training data points that 
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Illustration of a simple approach 
to the solution of a classification 
problem in which the input space 
is divided into cells and any new 
test point is assigned to the class 
that has a majority number of rep­
resentatives in the same cell as 
the test point. As we shall see 
shortly, this simplistic approach 
has some severe shortcomings. X7 
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fall in the same cell. The identity of the test point is predicted as being the same 
as the class having the largest number of training points in the same cell as the test 
point (with ties being broken at random). 

There are numerous problems with this naive approach, but one of the most se­
vere becomes apparent when we consider its extension to problems having larger 
numbers of input variables, corresponding to input spaces of higher dimensionality. 
The origin of the problem is illustrated in Figure 1.21, which shows that, if we divide 
a region of a space into regular cells, then the number of such cells grows exponen­
tially with the dimensionality of the space. The problem with an exponentially large 
number of cells is that we would need an exponentially large quantity of training data 
in order to ensure that the cells are not empty. Clearly, we have no hope of applying 
such a technique in a space of more than a few variables, and so we need to find a 
more sophisticated approach. 

We can gain further insight into the problems of high-dimensional spaces by 
returning to the example of polynomial curve fitting and considering how we would 

Figure 1.21 Illustration of the 
curse of· dimensionality, showing 
how the number of regions of a 
regular grid 'grows exponentially 
with the dimensionality D of the 
space. For clarity, only a subset of 
the cubical regions are shown for 
D=3. 

D= 1 D =2 D=3 
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Exercise 1.16 

Exercise 1.18 

Exercise 1.:20 

extend this approach to deal with input spaces having several variables. If we have 
D input variables, then a general polynomial with coefficients up to order 3 would 

take the form 
D D D D D D 

y(x, w) = Wo +I: WiXi +I: I: WijXiXj +I: I: I: WijkXiXjXk· (1.74) 
i=l i=l j=l i=l j=l k=l 

As D increases, so the number of independent coefficients (not all.qf the coefficients 
are independent due to interchange symmetries amongst the x variables) grows pro­
portionally to D 3 . In practice, to capture complex dependencies in the data, we may 
need to use a higher-order polynomial. For a polynomial•of order M, the growth in 
the number of coefficients is like DM. Although this is now a power law growth, 
rather than an exponential growth, it still points to the method becoming rapidly 
unwieldy and of limited practical utility. 

Our geometrical intuitions, formed through a life spent in a space of three di-
mensions, can fail badly when we consider spaces of higher dimensionality. As a 
simple example, consider a sphere of radius r = 1 in a space of D dimensions, and 
ask what is the fraction of the volume of the sphere that lies between radius r = 1-E 

and r = 1. We can evaluate this fraction by noting that the volume of a sphere of 
radius r in D dimensions must scale as rD, and so we write 

(1.75) 

where the constant KD depends only on D. Thus the required fraction is given by 

VD(1)- VD(1- E) = 1- ( - )D 
VD(1) 

1 
E 

(1.76) 

which is plotted as a function of E for various values of D in Figure 1.22. We see 
that, for large D, this fraction tends to 1 even for small values of E. Thus, in spaces 
of high dimensionality, most of the volume of a sphere is concentrated in a thin shell 

near the surface! 
As a further example, of direct relevance to pattern recognition, consider the 

behaviour of a Gaussian distribution in a high-dimensional space. If we transform 
from Cartesian to polar coordinates, and then integrate out the directional variables, 
we obtain an expression for the density p( r) as a function of radius r from the origin. 
Thus p(r)8r is the probability mass inside a thin shell of thickness 8r located at 
radius r. This distribution is plotted, for various values of D, in Figure 1.23, and we 
see that for large D the probability mass of the Gaussian is concentrated in a thin 

shell. 
The severe difficulty that can arise in spaces of many dimensions is sometimes 

called the curse of dimensionality (Bellman, 1961). In this book, we shall make ex­
tensive use of illustrative examples involving input spaces of one or two dimensions, 
because this makes it particularly easy to illustrate the techniques graphically. The 
reader should be warned, however, that not all intuitions developed in spaces of low 
dimensionality will generalize to spaces of many dimensions. 
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Figure 1.22 Plot of the fraction of the volume of 
a sphere lying in the range r = 1-E 

to r = 1 for various values of the 
dimensionality D. 

Figure 1.23 
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Although the curse of dimensionality certainly raises important issues for pat­
tern recognition applications, it does not prevent us from finding effective techniques 
applicable to high-dimensional spaces. The reasons for this are twofold. First, real 
data will often be confined to a region of the space having lower effective dimension­
ality, and in particular the directions over which important variations in the target 
variables occur may be so confined. Second, real data will typically exhibit some 
smoothness properties (at least locally) so that for the most part small changes in the 
input variables will produce small changes in the target variables, and so we can ex­
ploit local interpolation-like techniques to allow us to make predictions of the target 
variables for new values of the input variables. Successful pattern recognition tech­
niques exploit one or both of these properties. Consider, for example, an application 
in manufacturing in which images are captured of identical planar objects on a con­
veyor belt, in which the goal is to determine their orientation. Each image is a point 

Plot of the probability density with 
respect to radius r of a Gaus-
sian distribution for various values 
of the dimensionality D. In a 
high-dimensional space, most of the 
probability mass of a Gaussian is lo­
cated within a thin shell at a specific ~ 
radius. 'i:i:: 
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in a high-dimensional space whose dimensionality is detennined by the number of 
pixels. Because the objects can occur at different positions within the image and 
in different orientations, there are three degrees of freedom of variability between 
images, and a set of images will live on a three dimensional manifold embedded 
within the high-dimensional space. Due to the complex relationships between the 
object position or orientation and the pixel intensities, this manifold will be highly 
nonlinear. If the goal is to learn a model that can take an input image and output the 
orientation of the object irrespective of its position, then there is. only one degree of 
freedom of variability within the manifold that is significant. · 

1.5. Decision Theory -------
We have seen in Section 1.2 how probability theory provides us with a consistent 
mathematical framework for quantifying and manipulating uncertainty. Here we 
tum to a discussion ofdecision theory that, when combined with probability theory, 
allows us to make optimal decisions in situations involving uncertainty such as those 
encountered in pattern recognition. 

Suppose we have an input vector x together with a corresponding vector t of 
target variables, and our goal is to predict t given a new value for x. For regression 
problems, t will comprise continuous variables, whereas for classification problems 
t will represent class labels. The joint probability distribution p(x, t) provides a 
complete summary of the uncertainty associated with these variables. Detennination 
of p(x, t) from a set of training data is an example of inference and is typically a 
very difficult problem whose solution forms the subject of much of this book. In 
a practical application, however, we must often make a specific prediction for the 
value oft, or more generally take a specific action based on our understanding of the 
values tis likely to take, and this aspect is the subject of decision theory. 

Consider, for example, a medical diagnosis problem in which we have taken an 
X-ray image of a patient, and we wish to detennine whether the patient has cancer 
or not. In this case, the input vector x is the set of pixel intensities in the image, 
and output variable t will represent the presence of cancer, which we denote by the 
class C1 , or the absence of cancer, which we denote by the class C2 . We might, for 
instance, choose t to be a binary variable such that t = 0 corresponds to class cl and 
t = 1 corresponds to class C2 . We shall see later that this choice of label values is 
particularly convenient for probabilistic models. The general inference problem then 
involves detennining the joint distribution p(x, Ck), o:r equivalently p(x, t), which 
gives us the most complete probabilistic description of the situation. Although this 
can be a very useful and informative quantity, in the end we must decide either to 
give treatment to the patient or not, and we would like this choice to be optimal 
in some appropriate sense (Duda and Hart, 1973). This is the decision step, and 
it is the subject of decision theory to tell us how to make optimal decisions given 
the appropriate probabilities. We shall see that the decision stage is generally very 
simple, even trivial, once we have solved the inference problem. 

Here we give an introduction to the key ideas of decision theory as required for 
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the rest of the book. Further background, as well as more detailed accounts, can be 
found in Berger (1985) and Bather (2000). 

Before giving a more detailed analysis, let us first consider informally how we 
might expect probabilities to play a role in making decisions. When we obtain the 
X-ray image x for a new patient, our goal is to decide which of the two classes to 
assign to the image. We are interested in the probabilities of the two classes given 
the image, which are given by p(Cklx). Using Bayes' theorem, these probabilities 
can be expressed in the form 

(c I ) 
= p(x!Ck)p(Ck) 

p k x p(x) . (1.77) 

Note that any of the quantities appearing in Bayes' theorem can be obtained from 
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to 
the appropriate variables. We can now interpret p( Ck) as the prior probability for the 
class Ck, and p(Cklx) as the corresponding posterior probability. Thus p(C1) repre­
sents the probability that a person has cancer, before we take the X-ray measurement. 
Similarly, p( C1lx) is the corresponding probability, revised using Bayes' theorem in 
light of the information contained in the X-ray. If our aim is to minimize the chance 
of assigning x to the wrong class, then intuitively we would choose the class having 
the higher posterior probability. We now show that this intuition is correct, and we 
also discuss more general criteria for making decisions. 

1.5.1 Minimizing the misclassification rate 
Suppose that our goal is simply to make as few misclassifications as possible. 

We need a rule that assigns each value of x to one of the available classes. Such a 
rule will divide the input space into regions Rk called decision regions, one for each 
class, such that all points in Rk are assigned to class Ck. The boundaries between 
decision regions are called decision boundaries or decision surfaces. Note that each 
decision region need not be contiguous but could comprise some number of disjoint 
regions. We shall encounter examples of decision boundaries and decision regions in 
later chapters. In order to find the optimal decision rule, consider first of all the case 
of two classes, as in the cancer problem for instance. A mistake occurs when an input 
vector belonging to class C1 is assigned to class C2 or vice versa. The probability of 
this occurring is given by 

p(mistake) p(x E R1, C2) + p(x E R2, Cl) 

f p(x,C2)dx+ f p(x,C1)dx. 
lnl in2 

(1.78) 

We are free to choose the decision rule that assigns each point x to one of the two 
classes. Clearly to minimize p( mistake) we should arrange that each xis assigned to 
whichever class has the smaller value ofthe integrand in (1.78). Thus, if p(x, C1) > 
p(x, C2) for a given value of x, then we should assign that x to class C1. From the 
product rule of probability we have p(x, Ck) = p(Cklx)p(x). Because the factor 
p(x) is common to both terms, we can restate this result as saying that the minimum 



40 1. INTRODUCTION 

xo x 

X 

Figure 1.24 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted 
against x, together with the decision boundary x = x. Values of x ;;,: x are classified as 
class C2 and hence belong to decision region R2. whereas points x < x are classified 
as C1 and belong to R1. Errors arise from the blue, green, and red regions, so that for 
x < x the errors are due to points from class C2 being misclassified as C1 (represented by 
the sum of the red and green regions), and conversely for points in the region x ;;,: x the 
errors are due to points from class C1 being misclassified as C2 (represented by the blue 
region). As we vary the location x of the decision boundary, the combined areas of the 
blue and green regions remains constant, whereas the size of the red region varies. The 
optimal choice for x is where the curves for p( x, C1) and p( x, C2) cross, corresponding to 
x = xo, because in this case the red region disappears. This is equivalent to the minimum 
misclassification rate decision rule, which assigns each value of x to the class having the 

higher posterior probability p( ck \x). 

probability of making a mistake is obtained if each value of x is assigned to the class 
for which the posterior probability p(Ck\x) is largest. This result is illustrated for 

two classes, and a single input variable x, in Figure 1.24. 
For the more general case of K classes, it is slightly easier to maximize the 

probability of being correct, which is given by 

K 

p(correct) l:p(x E 'Rk, Ck) 
k=l 

(1.79) 

which is maximized when the regions 'Rk are chosen such that each x is assigned 
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) = 
p(Ck\x)p(x), and noting that the factor of p(x) is common to all terms, we see 
that each x should be assigned to the class having the largest posterior probability 

p(Ck\x). 
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Figure 1.25 An example of a loss matrix with ele­
ments Lkj for the cancer treatment problem. The rows 
correspond to the true class, whereas the columns cor­
respond to the assignment of class made by our deci­
sion criterion. 

cancer ( 
normal 

1.5.2 Minimizing the expected loss 

cancer 

0 
1 

For many applications, our objective will be more complex than simply mini­
mizing the number of misclassifications. Let us consider agmn the medical diagnosis 
problem. We note that, if a patient who does not have cancer is incorrectly diagnosed 
as having cancer, the consequences may be some eatient distress plus the need for 
further investigations. Conversely, if a patient with cancer is diagnosed as healthy, 
the result may be premature death due to lack of treatment. Thus the consequences 
of these two types of mistake can be dramatically different. It would clearly be better 
to make fewer mistakes of the second kind, even if this was at the expense of making 
more mistakes of the first kind. 

We can formalize such issues through the introduction of a loss function, also 
called a cost function, which is a single, overall measure of loss incurred in taking 
any of the available decisions or actions. Our goal is then to minimize the total loss 
incurred. Note that some authors consider instead a utility function, whose value 
they aim to maximize. These are equivalent concepts if we take the utility to be 
simply the negative of the loss, and throughout this text we shall use the loss function 
convention. Suppose that, for a new value of x, the true class is Ck and that we assign 
x to class Cj (where j may or may not be equal to k). In so doing, we incur some 
level of loss that we denote by Lkj, which we can view as the k, j element of a loss 
matrix. For instance, in our cancer example, we might have a loss matrix of the form 
shown in Figure 1.25. This particular loss matrix says that there is no loss incurred 
if the correct decision is made, there is a loss of 1 if a healthy patient is diagnosed as 
having cancer, whereas there is a loss of 1000 if a patient having cancer is diagnosed 
as healthy. 

The optimal solution is the one which minimizes the loss function. However, 
the loss function depends on the true class, which is unknown. For a given input 
vector x, our uncertainty in the true class is expressed through the joint probability 
distribution p(x, Ck) and so we seek instead to minimize the average loss, where the 
average is computed with respect to this distribution, which is given by 

IE[L] = Lk L L. Lkjp(x, Ck) dx. 
J J 

(1.80) 

Each x can be assigned independently to one of the decision regions Rj. Our goal 
is to choose the regions Rj in order to minimize the expected loss (1.80), which 
implies that for each x we should minimize Lk LkjP(x, Ck)· As before, we can use 
the product rule p(x,Ck) = p(Cklx)p(x) to eliminate the common factor of p(x). 
Thus the decision rule that minimizes the expected loss is the one that assigns each 
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Figure 1.26 Illustration of the reject option. Inputs p(C1 1x) 
x such that the larger of the two poste- 1.0 ~~..;:.:...~-

Exercise 1.24 

rior probabilities is less than or equal to e 
some threshold () will be rejected. 

0.0 ..__---~;=======;;-==---~x 
reject region 

new x to the class j for which the quantity 

2: Lkjp(Ckix) 
k 

(1.81) 

is a minimum. This is clearly trivial to do, once we know the posterior class proba­

bilities p(Ckjx). 

1.5.3 The reject option 
We have seen that classification errors arise from the regions of input space 

where the largest of the posterior probabilities p( ck jx) is significantly less than unity, 
or equivalently where the joint distributions p(x, Ck) have comparable values. These 
are the regions where we are relatively uncertain about class membership. In some 
applications, it will be appropriate to avoid making decisions on the difficult cases 
in anticipation of a lower error rate on those examples for which a classification de­
cision is made. This is known as the reject option. For example, in our hypothetical 
medical illustration, it may be appropriate to use an automatic system to classify 
those X-ray images for which there is little doubt as to the correct class, while leav­
ing a human expert to classify the more ambiguous cases. We can achieve this by 
introducing a threshold e and rejecting those inputs x for which the largest of the 
posterior probabilities p(Ck\x) is less than or equal to e. This is illustrated for the 
case of two classes, and a single continuous input variable x, in Figure 1.26. Note 
that setting e = 1 will ensure that all examples are rejected, whereas if there are K 
classes then setting () < 1 j K will ensure that no examples are rejected. Thus the 
fraction of examples that get rejected is controlled by the value of e. 

We can easily extend the reject criterion to minimize the expected loss, when 
a loss matrix is given, taking account of the loss incurred when a reject decision is 

made. 

1.5.4 Inference and decision 
We have broken the classification problem down into two separate stages, the 

inference stage in which we use training data to learn a model for p(Cklx), and the 
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subsequent decision stage in which we use these posterior probabilities to make op­
timal class assignments. An alternative possibility would be to solve both problems 
together and simply learn a function that maps inputs x directly into decisions. Such 
a function is called a discriminant function. 

In fact, we can identify three distinct approaches to solving decision problems, 
all of which have been used in practical applications. These are given, in decreasing 
order of complexity, by: 

(a) First solve the inference problem of determining the class-conditional densities 
p(x!Ck) for each class Ck individually. Also separateiy infer the prior class 
probabilities p(Ck)· Then use Bayes' theorem in the form . 

(c I ) = p(x!Ck)p(Ck) 
p k x p(x) (1.82) 

to find the posterior class probabilities p(Cklx). As usual, the denominator 
in Bayes' theorem can be found in terms of the quantities appearing in the 
numerator, because 

p(x) = LP(x!Ck)p(Ck)· (1.83) 
k 

Equivalently, we can model the joint distribution p(x, Ck) directly and then 
normalize to obtain the posterior probabilities. Having found the posterior 
probabilities, we use decision theory to determine class membership for each 
new input x. Approaches that explicitly or implicitly model the distribution of 
inputs as well as outputs are known as generative models, because by sampling 
from them it is possible to generate synthetic data points in the input space. 

(b) First solve the inference problem of determining the posterior class probabilities 
p(Cklx), and then subsequently use decision theory to assign each new x to 
one of the classes. Approaches that model the posterior probabilities directly 
are called discriminative models. 

(c) Find a function f(x), called a discriminant function, which maps each input x 
directly onto a class label. For instance, in the case of two-class problems, 
f ( ·) might be binary valued and such that f = 0 represents class C1 and f = 1 
represents class C2 . In this case, probabilities play no role. 

Let us consider the relative merits of these three alternatives. Approach (a) is the 
most demanding because it involves finding the joint distribution over both x and 
Ck. For many applications, x will have high dimensionality, and consequently we 
may need a large training set in order to be able to determine the class-conditional 
densities to reasonable accuracy. Note that the class priors p(Ck) can often be esti­
mated simply from the fractions of the training set data points in each of the classes. 
One advantage of approach (a), however, is that it also allows the marginal density 
of data p(x) to be determined from (1.83). This can be useful for detecting new data 
points that have low probability under the model and for which the predictions may 
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Figure 1.27 Example of the class-conditional densities for two classes having a single input variable x (left 
plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the 
class-conditional density p(xJC

1
), shown in blue on the left plot, has no effect on the posterior probabilities. The 

vertical green line in the right plot shows the decision boundary in x that gives the minimum misclassification 

rate. 

be of low accuracy, which is known as outlier detection or novelty detection (Bishop, 

1994; Tarassenko, 1995). 
However, if we only wish to make classification decisions, then it can be waste-

ful of computational resources, and excessively demanding of data, to find the joint 
distribution p(x, Ck) when in fact we only really need the posterior probabilities 
p(Cklx), which can be obtained directly through approach (b). Indeed, the class­
conditional densities may contain a lot of structure that has little effect on the pos­
terior probabilities, as illustrated in Figure 1.27. There has been much interest in 
exploring the relative merits of generative and discriminative approaches to machine 
learning, and in finding ways to combine them (Jebara, 2004; Lasserre et al., 2006). 

An even simpler approach is (c) in which we use the training data to find a 
discriminant function j(x) that maps each x directly onto a class label, thereby 
combining the inference and decision stages into a single learning problem. In the 
example of Figure 1.27, this would correspond to finding the value of x shown by 
the vertical green line, because this is the decision boundary giving the minimum 

probability of misclassification. 
With option (c), however, we no longer have access to the posterior probabilities 

p(Cklx). There are many powerful reasons for wanting to compute the posterior 
probabilities, even if we subsequently use them to make decisions. These include: 

Minimizing risk. Consider a problem in which the elements of the loss matrix are 
subjected to revision from time to time (such as might occur in a financial 



1.5. Decision Theory 45 

application). If we know the posterior probabilities, we can trivially revise the 
minimum risk decision criterion by modifying (1.81) appropriately. If we have 
only a discriminant function, then any change to the loss matrix would require 
that we return to the training data and solve the classification problem afresh. 

Reject option. Posterior probabilities allow us to determine a rejection criterion that 
will minimize the misclassification rate, or more generally the expected loss, 
for a given fraction of rejected data points. 

Compensating for class priors. Consider our medical X-ray problem again, and 
suppose that we have collected a large number of X-ray images from the gen­
eral population for use as training data in order. to build an automated screening 
system. Because cancer is rare amongst the general population, we might find 
that, say, only 1 in every 1,000 examples corresponds to the presence of can­
cer. If we used such a data set to train an adaptive model, we could run into 
severe difficulties due to the small proportion of the cancer class. For instance, 
a classifier that assigned every point to the normal class would already achieve 
99.9% accuracy and it would be difficult to avoid this trivial solution. Also, 
even a large data set will contain very few examples of X-ray images corre­
sponding to cancer, and so the learning algorithm will not be exposed to a 
broad range of examples of such images and hence is not likely to generalize 
well. A balanced data set in which we have selected equal numbers of exam­
ples from each of the classes would allow us to find a more accurate model. 
However, we then have to compensate for the effects of our modifications to 
the training data. Suppose we have used such a modified data set and found 
models for the posterior probabilities. From Bayes' theorem (1.82), we see that 
the posterior probabilities are proportional to the prior probabilities, which we 
can interpret as the fractions of points in each class. We can therefore simply 
take the posterior probabilities obtained from our artificially balanced data set 
and first divide by the class fractions in that data set and then multiply by the 
class fractions in the population to which we wish to apply the model. Finally, 
we need to normalize to ensure that the new posterior probabilities sum to one. 
Note that this procedure cannot be applied if we have learned a discriminant 
function directly instead of determining posterior probabilities. 

Combining models. For complex applications, we may wish to break the problem 
into a number of smaller subproblems each of which can be tackled by a sep­
arate module. For example, in our hypothetical medical diagnosis problem, 
we may have information available from, say, blood tests as well as X-ray im­
ages. Rather than combine all of this heterogeneous information into one huge 
input space, it may be more effective to build one system to interpret the X­
ray images and a different one to interpret the blood data. As long as each of 
the two models gives posterior probabilities for the classes, we can combine 
the outputs systematically using the rules of probability. One simple way to 
do this is to assume that, for each class separately, the distributions of inputs 
for the X-ray images, denoted by x1, and the blood data, denoted by XB, are 
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independent, so that 

(1.84) 

This is an example of conditional independence property, because the indepen­
dence holds when the distribution is conditioned oil the class ck. The posterior 
probability, given both the X-ray and blood data, is then given by 

p(Ck\xr,xB) ex p(xr,xB\Ck)p(Ck) 

ex p(xr \Ck)p(xB \Ck)p(Ck) 
p(Ck\xr)p(Ck\xB) 

ex 
p(C,;) 

(1.85) 

Thus we need the class prior probabilities p(Ck), which we can easily estimate 
from the fractions of data points in each class, and then we need to normalize 
the resulting posterior probabilities so they sum to one. The particular condi­
tional independence assumption (1.84) is an example of the naive Bayes model. 
Note that the joint marginal distribution p(xr, xB) will typically not factorize 
under this model. We shall see in later chapters how to construct models for 
combining data that do not require the conditional independence assumption 
(1.84). 

1.5.5 Loss functions for regression 
So far, we have discussed decision theory in the context of classification prob­

lems. We now turn to the case of regression problems, such as the curve fitting 
example discussed earlier. The decision stage consists of choosing a specific esti­
mate y(x) of the value oft for each input x. Suppose that in doing so, we incur a 
loss L( t, y(x)). The average, or expected, loss is then given by 

JE[L] = J J L(t, y(x))p(x, t) dxdt. (1.86) 

A common choice of loss function in regression problems is the squared loss given 
by L(t, y(x)) = {y(x)- tF. In this case, the expected loss can be written 

JE[L] = J J {y(x) - t}2p(x, t) dx dt. (1.87) 

Our goal is to choose y(x) so as to minimize JE[L]. If we assume a completely 
flexible function y(x), we can do this formally using the calculus of variations to 

give 
c5JE[L] J oy(x) = 2 {y(x)- t}p(x, t) dt = 0. (1.88) 

Solving for y(x), and using the sum and product rules of probability, we obtain 

J tp(x, t) dt 
y(x) = p(x) = J tp(t\x) dt = lEt[t\x] (1.89) 
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Figure 1.28 The regression function y(x), 
which minimizes the expected 
squared loss, is given by the 
mean of the conditional distri­
bution p(tlx). 

t 

y(x) 
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which is the conditional average oft conditioned on x and is known as the regression 
function. This result is illustrated in Figure 1.28. It can readily be extended to mul­
tiple target variables represented by the vector t, in which case the optimal solution 
is the conditional average y(x) = lEt[t!x]. 

We can also derive this result in a slightly different way, which will also shed 
light on the nature of the regression problem. Armed with the knowledge that the 
optimal solution is the conditional expectation, we can expand the square term as 
follows 

{y(x)- t} 2 = {y(x) -JE[t!x] + JE[tlx] - t}2 

= {y(x) -JE[tlx]}2 + 2{y(x) -lE[t!x]}{lE[tlx] - t} + {JE[t!x] - t} 2 

where, to keep the notation uncluttered, we use JE[t!x] to denote lEt [t!x]. Substituting 
into the loss function and performing the integral over t, we see that the cross-term 
vanishes and we obtain an expression for the loss function in the form 

JE[L] = j {y(x) -JE[t!x]}2 p(x) dx + j {lE[tlx]- t}2p(x) dx. (1.90) 

The function y(x) we seek to determine enters only in the first term, which will be 
minimized when y(x) is equal to JE[t!x], in which case this term will vanish. This 
is simply the result that we derived previously and that shows that the optimal least 
squares predictor is given by the conditional mean. The second term is the variance 
of the distribution of t, averaged over x. It represents the intrinsic variability of 
the target data and can be regarded as noise. Because it is independent of y(x), it 
represents the irreducible minimum value of the loss function. 

As with the classification problem, we can either determine the appropriate prob­
abilities and then use these to make optimal decisions, or we can build models that 
make decisions directly. Indeed, we can identify three distinct approaches to solving 
regression problems given, in order of decreasing complexity, by: 

(a) First solve the inference problem of determining the joint density p(x, t). Then 
normalize to find the conditional density p( tlx), and finally marginalize to find 
the conditional mean given by (1.89). 
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(b) First solve the inference problem of determining the conditional density p(t!x), 
and then subsequently marginalize to find the conditional mean given by (1.89). 

(c) Find a regression function y(x) directly from the training data. 

The relative merits of these three approaches follow the same lines as for classifica­
tion problems above. 

The squared loss is not the only possible choice of loss function for regression. 
Indeed, there are situations in which squared loss can lead to very poor results and 
where we need to develop more sophisticated approaches.· Ari important example 
concerns situations in which the conditional distribution p(t!x) is multimodal, as 
often arises in the solution of inverse problems. Here we consider briefly one simple 
generalization of the squared loss, called the Mink;wski loss, whose expectation is 
given by 

JE[Lq] = J J !y(x) - Wp(x, t) dx dt (1.91) 

which reduces to the expected squared loss for q = 2. The function IY - t!q is 
plotted against y- t for various values of q in Figure 1.29. The minimum of JE[Lq] 
is given by the conditional mean for q = 2, the conditional median for q = 1, and 
the conditional mode for q -+ 0. 

1.6. Information Theory -------

Exercise 1.28 

In this chapter, we have discussed a variety of concepts from probability theory and 
decision theory that will form the foundations for much of the subsequent discussion 
in this book. We close this chapter by introducing some additional concepts from 
the field of information theory, which will also prove useful in our development of 
pattern recognition and machine learning techniques. Again, we shall focus only on 
the key concepts, and we refer the reader elsewhere for more detailed discussions 
(Viterbi and Omura, 1979; Cover and Thomas, 1991; MacKay, 2003). 

We begin by considering a discrete random variable x and we ask how much 
information is received when we observe a specific value for this variable. The 
amount of information can be viewed as the 'degree of surprise' on learning the 
value of x. If we are told that a highly improbable event has just occurred, we will 
have received more information than if we were told that some very likely event 
has just occurred, and if we knew that the event was certain to happen we would 
receive no information. Our measure of information content will therefore depend 
on the probability distribution p( x), and we therefore look for a quantity h( x) that 
is a monotonic function of the probability p( x) and that expresses the information 
content. The form of h( ·) can be found by noting that if we have two events x 
and y that are unrelated, then the information gain from observing both of them 
should be the sum of the information gained from each of them separately, so that 
h(x,y) = h(x) + h(y). Two unrelated events will be statistically independent and 
so p( x, y) = p( x )p(y). From these two relationships, it is easily shown that h( x) 
must be given by the logarithm of p( x) and so we have 
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h(x) = -log2 p(x) (1.92) 

where the negative sign ensures that information is positive or zero. Note that low 
probability events x correspond to high information content. The choice of basis 
for the logarithm is arbitrary, and for the moment we shall adopt the convention 
prevalent in information theory of using logarithms to the base of 2. In this case, as 
we shall see shortly, the units of h(x) are bits ('binary digits'). 

Now suppose that a sender wishes to transmit the value of a random variable to 
a receiver. The average amount of information that they transmit in the process is 
obtained by taking the expectation of ( 1.92) with respect to the distribution p( x) and 
is given by 

H(x] =- l::p(x) log2 p(x). (1.93) 
X 

This important quantity is called the entropy of the random variable x. Note that 
limp__,0 plnp = 0 and so we shall take p(x) lnp(x) = 0 whenever we encounter a 
value for x such that p( x) = 0. 

So far we have given a rather heuristic motivation for the definition of informa-
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tion (1.92) and the corresponding entropy (1.93). We now show that these definitions 
indeed possess useful properties. Consider a random variable x having 8 possible 
states, each of which is equally likely. In order to communicate the value of x to 
a receiver, we would need to transmit a message of length 3 bits. Notice that the 
entropy of this variable is given by 

H[x] = -8 x ~ log2 ~ = 3 bits. 
. 8 8 

Now consider an example (Cover and Thomas, 1991) of a .variable having 8 pos­
sible states {a, b, c, d, e, f, g, h} for which the respective probabilities are given by 
( ~ , ~ , ~ , 

1
1
6 

, 
6
1
4 

, 
6
1
4 

, 
6
1
4 

, 6~ ) • The entropy in this case is given by 

1 11 11 11 14 1 
H[x] = --log

2
-- -log2 -- -log ---log ---log - = 2 bits. 

2 2 4 4 8 2 8 16 2 16 64 
2 

64 

We see that the nonuniform distribution has a smaller entropy than the uniform one, 
and we shall gain some insight into this shortly when we discuss the interpretation of 
entropy in terms of disorder. For the moment, let us consider how we would transmit 
the identity of the variable's state to a receiver. We could do this, as before, using 
a 3-bit number. However, we can take advantage of the nonuniform distribution by 
using shorter codes for the more probable events, at the expense of longer codes for 
the less probable events, in the hope of getting a shorter average code length. This 
can be done by representing the states {a, b, c, d, e, J, g, h} using, for instance, the 
following set of code strings: 0, 10, 110, 1110, 111100, 111101, 111110, 111111. 
The average length of the code that has to be transmitted is then 

1 1 1 1 1 . 
average code length= 2 x 1 + 4 x 2 + S x 3 + 16 x 4 + 4 x 64 x 6 = 2 b1ts 

which again is the same as the entropy of the random variable. Note that shorter code 
strings cannot be used because it must be possible to disambiguate a concatenation 
of such strings into its component parts. For instance, 11001110 decodes uniquely 
into the state sequence c, a, d. 

This relation between entropy and shortest coding length is a general one. The 
noiseless coding theorem (Shannon, 1948) states that the entropy is a lower bound 
on the number of bits needed to transmit the state of a random variable. 

From now on, we shall switch to the use of natural logarithms in defining en­
tropy, as this will provide a more convenient link with ideas elsewhere in this book. 
In this case, the entropy is measured in units of 'nats' instead of bits, which differ 
simply by a factor of ln 2. 

We have introduced the concept of entropy in terms of the average amount of 
information needed to specify the state of a random variable. In fact, the concept of 
entropy has much earlier origins in physics where it was introduced in the context 
of equilibrium thermodynamics and later given a deeper interpretation as a measure 
of disorder through developments in statistical mechanics. We can understand this 
alternative view of entropy by considering a set of N identical objects that are to be 
divided amongst a set of bins, such that there are ni objects in the ith bin. Consider 
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the number of different ways of allocating the objects to the bins. There are N 
ways to choose the first object, (N - 1) ways to choose the second object, and 
so on, leading to a total of N! ways to allocate all N objects to the bins, where N! 
(pronounced 'factorial N') denotesthe product N x (N -1) x · · · x 2 x 1. However, 
we don't wish to distinguish between rearrangements of objects within each bin. In 
the ith bin there are ni! ways of reordering the objects, and so the total number of 
ways of allocating the N objects to the bins is given by 

(1.94) 

which is called the multiplicity. The entropy is theu defined as the logarithm of the 
multiplicity scaled by an appropriate constant 

1 1 1 
H= NlnW= NlnN!- NLlnni!. (1.95) 

i 

We now consider the limit N ~ oo, in which the fractions nd N are held fixed, and 
apply Stirling's approximation 

InN! c:::: NlnN- N (1.96) 

which gives 

(1.97) 

where we have used l::i ni = N. Here Pi = limN-+oo(ni/N) is the probability 
of an object being assigned to the ith bin. In physics terminology, the specific ar­
rangements of objects in the bins is called a microstate, and the overall distribution 
of occupation numbers, expressed through the ratios nd N, is called a macrostate. 
The multiplicity W is also known as the weight of the macrostate. 

We can interpret the bins as the states Xi of a discrete random variable X, where 
p(X =xi) =Pi· The entropy of the random variable X is then 

(1.98) 

Distributions p(xi) that are sharply peaked around a few values will have a relatively 
low entropy, whereas those that are spread more evenly across many values will 
have higher entropy, as illustrated in Figure 1.30. Because 0 ::;;; Pi ::;;; 1, the entropy 
is nonnegative, and it will equal its minimum value of 0 when one of the Pi = 

1 and all other P#i = 0. The maximum entropy configuration can be found by 
maximizing H using a Lagrange multiplier to enforce the normalization constraint 
on the probabilities. Thus we maximize 

H ~- ~p(x,) lnp(x;) + >. ( ~p(x;)- 1) (1.99) 
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Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy 
H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H = 
-ln(l/30) = 3.40. 

Exercise 1.29 

from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M 
where M is the total number of states Xi· The corresponding value of the entropy 
is then H = lnM. This result can also be derived from Jensen's inequality (to be 
discussed shortly). To verify that the stationary point is indeed a maximum, we can 
evaluate the second derivative of the entropy, which gives 

(1.100) 

where Iij are the elements of the identity matrix. 
We can extend the definition of entropy to include distributions p( x) over con-

tinuous variables x as follows. First divide x into bins of width 6.. Then, assuming 
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each 
such bin, there must exist a value Xi such that 

l
(i+l)~ 

p(x) dx = p(xi)b.. 
.~ 

(1.101) 

We can now quantize the continuous variable x by assigning any value x to the value 
Xi whenever x falls in the ith bin. The probability of observing the value Xi is then 
p(xi)b.. This gives a discrete distribution for which the entropy takes the form 

(1.102) 

where we have used L::ip(xi)b. = 1, which follows from (1.101). We now omit 
the second term -ln 6. on the right-hand side of (1.102) and then consider the limit 



1.6. Information Theory 53 

..6. ---> 0. The first term on the right-hand side of (1.102) will approach the integral of 
p(x) lnp(x) in this limit so that 

J.i.'!'o { ~p(x;)L'dnp(x;)} ~- j p(x) lnp(x) dx (1.103) 

where the quantity on the right-hand side is called the differential entropy. We see 
that the discrete and continuous forms of the entropy differ by a quantity ln ..6., which 
diverges in the limit ..6. ---> 0. This reflects the fact that to specify a continuous 
variable very precisely requires a large number of bits. For a density defined over 
multiple continuous variables, denoted collectively.by the vector x, the differential 
entropy is given by 

H[x] = - J p(x) lnp(x) dx. (1.104) 

In the case of discrete distributions, we saw that the maximum entropy con­
figuration corresponded to an equal distribution of probabilities across the possible 
states of the variable. Let us now consider the maximum entropy configuration for 
a continuous variable. In order for this maximum to be well defined, it will be nec­
essary to constrain the first and second moments of p( x) as well as preserving the 
normalization constraint. We therefore maximize the differential entropy with the 

r-·~CO> "''~--- ~ L~d~i9' B~~~~~r~~~-~~,~- ~-~'c!;~~~~~~,,~hi6h~;~;~~-;h~~"~;;~- entr;~~- of-,~-~~~~~d1 

1844.,.-1906 system tends to increase with time. By contrast, at 
the microscopic level .. the classical-Newtonian equa-·· 

Ludwig Eduard B()ltzmann was an • tions of physics are reversible, and so they found it: 
Austrian physicisLwl)o 'created the difficult to see how'the'lattercould explain the fo'r-' 
field of statistical 'mechanics. Prior mer. . They didn't fully appreciate Boltzmann's argu.:; 
to Boltzmann, the concept of en- ments, which were statistical in nature and which con- ! 
tropy was already known from . eluded not that entropy cOuld never decrease over i 
·classical theimodynamics VI/here if time but simply that with overVIfhelming probability. it · 

the fact that· when we· tak~ energy from a would generally increase: Boltzmann even had a long­
system, not all of that energy is typically available running dispute with the editor of the leading German 
to do useful work. Boltzmann showed that the ther- physics journal who refused to let hirri refer to atoms 
modynamic entropy S, a macroscopic quantity, could and molecules as anything other than convenient the- • 
be related to the statistical properties at the micro" oretical constructs; The continued attacks on his work 
scopic l~vel. This is expressed through the famous lead to bouts of depression, and eventually he c.om­
;:~quation · S = .k ln W in which W represents the mitted suicide. Shortly after Boltzmann's death, new ' 
number of possible microstates in a macrostate, and experiments by Perrin on colloidal suspensions veri­
)t ~ 1.38 X io-23 (in units. of Joules per Kelvin) is tied his theories and confirmed the value of the Boltz-: 
known· as Boltzmann's constant. Boltzmann's ideas mann constant. The equation S = k ln W is carved on ' 

\W'ere disputed by many scientists of they day. Onedif- Boltzmann's tombstone. · 
:!!PlJltyl~~y ~i3:"!: i3:~2~~1L<J.Il]J~~--§l~C::s>11c:i . .la_'l\f o! t_hE)rrl}()_-
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Appendix E 

Appendix D 

Exercise 1.34 

Exercise 1.35 

three constraints 

j_: p(x)dx 1 (1.105) 

j_: xp(x) dx JL (1.106) 

j_: (x -JL)2p(x) dx = o-
2

. (1.107) 

The constrained maximization can be performed using Lagrange multipliers so that 
we maximize the following functional with respect to p(x) 

-j_: p(x) lnp(x) dx + )q (j_: p(x) dx- 1) 

+;\2 (j_: xp(x) dx -JL) + ;\3 (j_: (x -JL)
2
p(x) dx- o-

2
) . 

Using the calCulus of variations, we set the derivative of this functional to zero giving 

(1.108) 

The Lagrange multipliers can be found by back substitution of this result into the 
three constraint equations, leading finally to the result 

(1.109) 

and so the distribution that maximizes the differential entropy is the Gaussian. Note 
that we did not constrain the distribution to be nonnegative when we maximized the 
entropy. However, because the resulting distribution is indeed nonnegative, we see 
with hindsight that such a constraint is not necessary. 

If we evaluate the differential entropy of the Gaussian, we obtain 

1 
H[x] = 2 { 1 + ln(27ro-2

)} . (1.110) 

Thus we see again that the entropy increases as the distribution becomes broader, 
i.e., as o-2 increases. This result also shows that the differential entropy, unlike the 
discrete entropy, can be negative, because H(x) < 0 in (1.110) for o-

2 < 1/(27re). 
Suppose we have a joint distribution p(x, y) from which we draw pairs of values 

of x andy. If a value of xis already known, then the additional information needed 
to specify the corresponding value of y is given by -lnp(ylx). Thus the average 
additional information needed to specify y can be written as 

H[ylx] =- JJ p(y,x)lnp(ylx)dydx (1.111) 
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which is called the conditional entropy of y given x. It is easily seen, using the 
product rule, that the conditional entropy satisfies the relation 

H[x, y] = H[ylx] + H[x] (1.112) 

where H[x, y] is the differential entropy of p(x, y) and H[x] is the differential en­
tropy of the marginal distribution p(x). Thus the information needed to describe x 
and y is given by the sum of the information needed to describe x alone plus the 
additional information required to specify y given x. 

1.6.1 Relative entropy and mutual information 
So far in this section, we have introduced a number of concepts from information 

theory, including the key notion of entropy. We now start to relate these ideas to 
pattern recognition. Consider some unknown distribution p(x), and suppose that 
we have modelled this using an approximating distribution q(x). If we use q(x) to 
construct a coding scheme for the purpose of transmitting values of x to a receiver, 
then the average additional amount of information (in nats) required to specify the 
value ofx (assuming we choose an efficient coding scheme) as a result of using q(x) 
instead of the true distribution p( x) is given by 

KL(pllq) = - J p(x) ln q(x) dx- (- J p(x) lnp(x) dx) 

-J p(x) ln { ;~:~} dx. (1.113) 

This is known as the relative entropy or Kullback-Leibler divergence, or KL diver­
gence (Kullback and Leibler, 1951), between the distributions p(x) and q(x). Note 
that it is not a symmetrical quantity, that is to say KL(PIIq) ¢. KL(qllp). 

We now show that the Kullback-Leibler divergence satisfies KL(PIIq) ~ 0 with 
equality if, and only if, p(x) = q(x). To do this we first introduce the concept of 
convex functions. A function f(x) is said to be convex if it has the property that 
every chord lies on or above the function, as shown in Figure 1.31. Any value of x 
in the interval from x =a to x = b can be written in the form -Xa + (1- -X)b where 
0 ~A~ 1. The corresponding point on the chord is given by -Xf(a) + (1- -A)f(b), 
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Figure 1.31 A convex function f(x) is one for which ev­
ery chord (shown in blue) lies on or above 
the function (shown in red). 

f(x) 

Exercise 1.36 

Exercise 1.38 

a X 

and the corresponding value of the function is f (Aa + (1- A)b). Convexity then 
implies 

j(Aa + (1- A)b) ~ Aj(a) + (1- A)j(b). (1.114) 

This is equivalent to the requirement that the second derivative of the function be 
everywhere positive. Examples of convex functions are x ln x (for x > 0) and x 2

• A 
function is called strictly convex if the equality is satisfied only for A = 0 and A = 1. 
If a function has the opposite property, namely that every chord lies on or below the 
function, it is called concave, with a corresponding definition for strictly concave. If 
a function f ( x) is convex, then - f ( x) will be concave. 

Using the technique of proof by induction, we can show from (1.114) that a 
convex function f ( x) satisfies 

(1.115) 

where Ai ~ 0 and l::i Ai = 1, for any set of points {xi}. The result ( 1.115) is 
known as Jensen's inequality. If we interpret the Ai as the probability distribution 
over a discrete variable x taking the values {Xi}, then ( 1.115) can be written 

f (JE[x]) ~ lE[f(x)] (1.116) 

where lE[·] denotes the expectation. For continuous variables, Jensen's inequality 
takes the form 

f (! xp(x) dx) ~ J f(x)p(x) dx. (1.117) 

We can apply Jensen's inequality in the form (1.117) to the Kullback-Leibler 
divergence ( 1.113) to give 

KL(pjjq) =-J p(x) ln {;~:~} dx ~ -ln J q(x) dx = 0 (1.118) 
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where we have used the fact that - ln x is a convex function, together with the nor­
malization condition J q(x) dx = 1. In fact, -ln x is a strictly convex function, 
so the equality will hold if, and only if, q(x) = p(x) for all x. Thus we can in­
terpret the Kullback-Leibler divergence as a measure of the dissimilarity of the two 
distributions p(x) and q(x). 

We see that there is an intimate relationship between data compression and den­
sity estimation (i.e., the problem of modelling an unknown probability distribution) 
because the most efficient compression is achieved when we know the true distri­
bution. If we use a distribution that is different from the true one, then we must 
necessarily have a less efficient coding, and on average the additional information 
that must be transmitted is (at least) equal to the Kullback-Leibler divergence be­
tween the two distributions. 

Suppose that data is being generated from an unknown distribution p(x) that we 
wish to model. We can try to approximate this distribution using some parametric 
distribution q(x!B), governed by a set of adjustable parameters 0, for example a 
multivariate Gaussian. One way to determine B is to minimize the Kullback-Leibler 
divergence between p(x) and q(x!B) with respect to B. We cannot do this directly 
because we don't know p(x). Suppose, however, that we have observed a finite set 
of training points Xn, for n = 1, ... , N, drawn from p(x). Then the expectation 
with respect to p(x) can be approximated by a finite sum over these points, using 
(1.35), so that 

N 

KL(pl!q) ~ L { -ln q(xn!B) + lnp(xn)}. (1.119) 
n=l 

The second term on the right -hand side of ( 1.119) is independent of B, and the first 
term is the negative log likelihood function forB under the distribution q(x!B) eval­
uated using the training set. Thus we see that minimizing this Kullback-Leibler 
divergence is equivalent to maximizing the likelihood function. 

Now consider the joint distribution between two sets of variables x and y given 
by p(x, y). If the sets of variables are independent, then their joint distribution will 
factorize into the product of their marginals p(x, y) = p(x)p(y). If the variables are 
not independent, we can gain some idea of whether they are 'close' to being indepen­
dent by considering the Kullback-Leibler divergence between the joint distribution 
and the product of the marginals, given by 

I[x,y] KL(p(x, y) llp(x)p(y)) 

-jr r p(x,y)ln (p(x)p(y)) dxdy 
} p(x,y) 

(1.120) 

which is called the mutual information between the variables x and y. From the 
properties of the Kullback-Leibler divergence, we see that J(x, y) ~ 0 with equal­
ity if, and only if, x andy are independent. Using the sum and product rules of 
probability, we see that the mutual information is related to the conditional entropy 
through 

I[x, y] = H[x] - H[x!y] = H[y] - H[y!x]. (1.121) 
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Thus we can view the mutual information as the reduction in the uncertainty about x 
by virtue of being told the value of y (or vice versa). From a Bayesian perspective, 
we can view p(x) as the prior distribution for x and p(x\y) as the posterior distribu­
tion after we have observed new data y. The mutual information therefore represents 
the reduction in uncertainty about x as a consequence of the new observation y. 

1.1 (*) iftii14Sil Consider the sum-of-squares error function given by (1.2) in which 
the function y(x, w) is given by the polynomial (1.1). Show that the coefficients 
w = { Wi} that minimize this error function are given by the solution to the following 
set of linear equations 

where 

M 

LAijWj =Ti 
j=O 

N 

Ti = :L)xn)itn. 
n=l 

(1.122) 

(1.123) 

Here a suffix i or j denotes the index of a component, whereas (x)i denotes x raised 
to the power of i. 

1.2 (*) Write down the set of coupled linear equations, analogous to (1.122), satisfied 
by the coefficients Wi which minimize the regularized sum-of-squares error function 
given by (1.4). 

1.3 (**) Suppose that we have three coloured boxes r (red), b (blue), and g (green). 
Box r contains 3 apples, 4 oranges, and 3 limes, box b contains 1 apple, 1 orange, 
and 0 limes, and box g contains 3 apples, 3 oranges, and 4 limes. If a box is chosen 
at random with probabilities p(r) = 0.2, p(b) = 0.2, p(g) = 0.6, and a piece of 
fruit is removed from the box (with equal probability of selecting any of the items in 
the box), then what is the probability of selecting an apple? If we observe that the 
selected fruit is in fact an orange, what is the probability that it came from the green 
box? 

1.4 (**) iii!l!i Consider a probability density Px(x) defined over a continuous vari­
able x, and suppose that we make a nonlinear change of variable using x = g(y), 
so that the density transforms according to (1.27). By differentiating (1.27), show 
that the location y of the maximum of the density in y is not in general related to the 
location x of the maximum of the density over x by the simple functional relatior 
x = g(y) as a consequence of the Jacobian factor. This shows that the maximurr 
of a probability density (in contrast to a simple function) is dependent on the choict 
of variable. Verify that, in the case of a linear transformation, the location of tht 
maximum transforms in the same way as the variable itself. 

1.5 (*) Using the definition (1.38) show that var[f(x)] satisfies (1.39). 
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1.6 (*) Show that if two variables x and y are independent, then their covariance is 
zero. 

1.7 (**) lmiJ In this exercise, we prove the normalization condition (1.48) for the 
univariate Gaussian. To do this consider, the integral 

(1.124) 

which we can evaluate by first writing its square in the form 

2 100 100 

( 1 2 1 2) I = exp --x - -y dxdy. 
-oo -oo 20'2 20'2 

(1.125) 

Now make the transformation from Cartesian coordinates (x, y) to polar coordinates 
( r, fJ) and then substitute u = r 2

• Show that, by performing the integrals over () and 
u, and then taking the square root of both sides, we obtain 

(1.126) 

Finally, use this result to show that the Gaussian distribution N(xJJ-L, 0'2 ) is normal­
ized. 

1.8 (**) lmiJ By using a change of variables, verify that the univariate Gaussian 
distribution given by (1.46) satisfies (1.49). Next, by differentiating both sides of the 
normalization condition 

(1.127) 

with respect to 0'
2 , verify that the Gaussian satisfies (1.50). Finally, show that (1.51) 

holds. 

1.9 (*) lmiJ Show that the mode (i.e. the maximum) of the Gaussian distribution 
(1.46) is given by J-L. Similarly, show that the mode of the multivariate Gaussian 
(1.52) is given by JL. 

1.10 (*) lmiJ Suppose that the two variables x and z are statistically independent. 
Show that the mean and variance of their sum satisfies 

IE[x + z] 
var[x + z] 

IE[x] + IE[z] 
var[x] + var[z]. 

(1.128) 

(1.129) 

1.11 (*) By setting the derivatives of the log likelihood function (1.54) with respect to J-L 
and 0'

2 equal to zero, verify the results (1.55) and (1.56). 
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1.12 (**)all Using the results (1.49) and (1.50), show that 

lE[XnXm] = J.l-
2 + Inma

2 (1.130) 

where Xn and Xm denote data points sampled from a Gaussian distribution with mean 
J.1. and variance a 2, and Inm satisfies Inm = 1 if n = m and Inm = 0 otherwise. 
Hence prove the results (1.57) and (1.58). 

1.13 (*) Suppose that the variance of a Gaussian is estimated using the result ( 1.56) but 
with the maximum likelihood estimate f.J.ML replaced with the true value J.1. of the 
mean. Show that this estimator has the property that its expectation is given by the 

true variance a 2
• 

1.14 (**) Show that an arbitrary square matrix with elements Wij can be written in 

th 
.c S + A h S d A · d · . e 1orm Wij = wij wij w ere wij an wij are symmetnc an anu-symmetnc 

matrices, respectively, satisfying wri = w;i and wt = -wt for all i and j. Now 
consider the second order term in a higher order polynomial in D dimensions, given 

by 

Show that 

D D 

LLWijXiXj­
i=l j=l 

D D D D 

'l:'l:wijxixj = 'l:'l:wrjxixj 
i=l j=l i=l j=l 

(1.131) 

(1.132) 

so that the contribution from the anti-symmetric matrix vanishes. We therefore see 
that, without loss of generality, the matrix of coefficients Wij can be chosen to be 
symmetric, and so not all of the D 2 elements of this matrix can be chosen indepen· 
dently. Show that the number of independent parameters in the matrix wri is giver 

by D(D + 1)/2. 
1.15 ( * * *) all In this exercise and the next, we explore how the number of indepen 

dent parameters in a polynomial grows with the order M of the polynomial and witl 
the dimensionality D of the input space. We start by writing down the Mth orde 
term for a polynomial in D dimensions in the form 

D D D 

L L ... L Wili2···iMXi1Xi, .. ·XiM· (1.13~ 

it=l i2=l iM=l 

The coefficients Wi
1

i
2
···iM comprise DM elements, but the number of independe1 

parameters is significantly fewer due to the many interchange symmetries of tl 
factor Xi, Xi

2 
• • • XiM. Begin by showing that the redundancy in the coefficients c~ 

be removed by rewriting this Mth order term in the form 

D i, iM-1 

L L ... L Wili2···iMXi,Xi2 .. ·XiM· (1.13 

i,=l h=l iM=l 
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Note that the precise relationship between thew coefficients and w coefficients need 
not be made explicit. Use this result to show that the number of independent param­
eters n(D, M), which appear at order M, satisfies the following recursion relation 

D 

n(D,M) = Ln(i,M -1). 
i=l 

Next use proof by induction to show that the following result holds 

D 
~ (i + M- 2)! (D + M- 1)! 
{;;t (i- 1)! (M- 1)! = (D- 1)! M! 

(1.135) 

(1.136) 

which can be done by first proving the result for D = 1 and arbitrary M by making 
use of the result O! = 1, then assuming it is correct for dimension D and verifying 
that it is correct for dimension D + 1. Finally, use the two previous results, together 
with proof by induction, to show 

(D+M -1)! 
n(D,M)= (D-1)!M!. (1.137) 

To do this, first show that the result is true for M = 2, and any value of D ;? 1, 
by comparison with the result of Exercise 1.14. Then make use of ( 1.135), together 
with (1.136), to show that, if the result holds at order M -1, then it will also hold at 
order M 

1.16 (***) In Exercise 1.15, we proved the result (1.135) for the number of independent 
parameters in the Mth order term of a D-dimensional polynomial. We now find an 
expression for the total number N ( D, M) of independent parameters in all of the 
terms up to and including the M6th order. First show that N(D, M) satisfies 

M 

N(D, M) = L n(D, m) (1.138) 
m=O 

where n(D, m) is the number of independent parameters in the term of order m. 
Now make use of the result (1.137), together with proof by induction, to show that 

N(d M) = (D + M)! (1.139) 
' D!M!. 

This can be done by first proving that the result holds for M 0 and arbitrary 
D ;? 1, then assuming that it holds at order M, and hence showing that it holds at 
order M + 1. Finally, make use of Stirling's approximation in the form 

(1.140) 

for large n to show that, forD ~ M, the quantity N(D, M) grows like DM, 
and forM ~ D it grows like MD. Consider a cubic (M = 3) polynomial in D 
dimensions, and evaluate numerically the total number of independent parameters 
for (i) D = 10 and (ii) D = 100, which correspond to typical small-scale and 
medium-scale machine learning applications. 
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1.17 ( * *) 1111!1 The gamma function is defined by 

r(x) = 100 

ux-le-u du. (1.141) 

Using integration by parts, prove the relation r(x + 1) = xr(x). Show also that 
r(1) = 1 and hence that r(x + 1) = x! when X is an integer. 

1.18 (**) IIID We can use the result (1.126) to derive an expression for the surfac~ 
area S D, and the volume V D, of a sphere of unit radius in D dimensions. To do this 
consider the following result, which is obtained by transforming from Cartesian t( 

polar coordinates 

(1.142 

Using the definition (1.141) of the Gamma function, together with (1.126), evaluat 
both sides of this equation, and hence show that 

27rD/2 

Sn = r(D/2)" 
(1.14~ 

Next, by integrating with respect to radius from 0 to 1, show that the volume of tl: 
unit sphere in D dimensions is given by 

Sn 
Vn=v· 

(1.14 

Finally, use the results r(1) = 1 and r(3/2) = ..jir /2 to show that (1.143) ru: 
(1.144) reduce to the usual expressions forD= 2 and D = 3. 

1.19 (**) Consider a sphere of radius a in D-dimensions together with the concenti 
hypercube of side 2a, so that the sphere touches the hypercube at the centres of ea• 
of its sides. By using the results of Exercise 1.18, show that the ratio of the volur 
of the sphere to the volume of the cube is given by 

7rD/2 volume of sphere 

volume of cube D2D-lr(D/2). 

Now make use of Stirling's formula in the form 

r(x + 1) ~ (27r)l/2e-xxx+l/2 

(1.14 

(1.1< 

which is valid for x » 1, to show that, as D ~ oo, the ratio (1.145) goes to ze 
Show also that the ratio of the distance from the centre of the hypercube to one 
the comers, divided by the perpendicular distance to one of the sides, is .JD, wh 
therefore goes to oo as D ~ oo. From these results we see that, in a space of h 
dimensionality, most of the volume of a cube is concentrated in the large numbe1 
comers, which themselves become very long 'spikes'! 
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1.20 ( * *) IB!J In this exercise, we explore the behaviour of the Gaussian distribution 
in high-dimensional spaces. Consider a Gaussian distribution in D dimensions given 
by 

(1.147) 

We wish to find the density with respect to radius in polar coordinates in which the 
direction variables have been integrated out. To do this, show that the integral of 
the probability density over a thin shell of radius r and thickness E, where E « 1, is 
given by p(r)E where 

p(r) = (::;~~~2 exp (- ;;2 ) (1.148) 

where S D is the surface area of a unit sphere in D dimensions. Show that the function 
p(r) has a single stationary point located, for large D, atr ~ v'Du. By considering 
p(r + E) where E « r, show that for large D, 

p(r + E) = p(r) exp (- ~;:) (1.149) 

which shows that r is a maximum of the radial probability density and also that p( r) 
decays exponentially away from its maximum at r with length scale u. We have 
already seen that u « r for large D, and so we see that most of the probability 
mass is concentrated in a thin shell at large radius. Finally, show that the probability 
density p(x) is larger at the origin than at the radius r by a factor of exp(D /2). 
We therefore see that most of the probability mass in a high-dimensional Gaussian 
distribution is located at a different radius from the region of high probability density. 
This property of distributions in spaces of high dimensionality will have important 
consequences when we consider Bayesian inference of model parameters in later 
chapters. 

1.21 (**) Consider two nonnegative numbers a and b, and show that, if a ~ b, then 
a ~ (ab) 112 . Use this result to show that, if the decision regions of a two-class 
classification problem are chosen to minimize the probability of misclassification, 
this probability will satisfy 

p(mistake) ~ J {p(x, C1 )p(x, C2 )} 
1

/
2 dx. (1.150) 

1.22 (*) ll1!lll Given a loss matrix with elements Lkj· the expected risk is minimized 
if, for each x, we choose the class that minimizes (1.81). Verify that, when the 
loss matrix is given by Lkj = 1 - hi• where hi are the elements of the identity 
matrix, this reduces to the criterion of choosing the class having the largest posterior 
probability. What is the interpretation of this form of loss matrix? 

1.23 (*) Derive the criterion for minimizing the expected loss when there is a general 
loss matrix and general prior probabilities for the classes. 
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1.24 (**) IIIJ Consider a classification problem in which the loss incurred when 
an input vector from class Ck is classified as belonging to class Ci is given by the 
loss matrix Lki• and for which the loss incurred in selecting the reject option is A. 
Find the decision criterion that will give the minimum expected loss. Verify that this 
reduces to the reject criterion discussed in Section 1.5 .3 when the loss matrix is given 
by Lkj = 1- Iki· What is the relationship between A and the rejection threshold()? 

1.25 (*) ll!m Consider the generalization of the squared loss function (1.87) for a 
single target variable t to the case of multiple target variables described by the vector 
t given by 

lE[L(t, y(x))] = J J lly(x)- tll
2
p(x, t) dxdt. (1.151) 

Using the calculus of variations, show that the function y(x) for which this expected 
loss is minimized is given by y(x) = lEt[tlx]. Show that this result reduces to (1.89) 
for the case of a single target variable t. 

1.26 (*) By expansion of the square in (1.151), derive a result analogous to (1.90) anc 
hence show that the function y(x) that minimizes the expected squared loss for thf 
case of a vector t of target variables is again given by the conditional expectation o: 

t. 

1.27 (**) ll!m Consider the expected loss for regression problems under the Lq los: 
function given by (1.91). Write down the condition that y(x) must satisfy in orde 
to minimize JE[Lq]· Show that, for q = 1, this solution represents the conditiona 
median, i.e., the function y(x) such that the probability mass for t < y(x) is th' 
same as fort ~ y(x). Also show that the minimum expected Lq loss for q ---t 0 i 
given by the conditional mode, i.e., by the function y(x) equal to the value oft tha 

maximizes p(tlx) for each x. 

1.28 (*) In Section 1.6, we introduced the idea of entropy h(x) as the information gaine 
on observing the value of a random variable x having distribution p( x). We sm 
that, for independent variables x andy for which p(x, y) = p(x)p(y), the entrap 
functions are additive, so that h(x, y) = h(x) + h(y). In this exercise, we derive th 
relation between hand pin the form of a function h(p). First show that h(p2

) = 

2h(p), and hence by induction that h(pn) = nh(p) where n is a positive intege 
Hence show that h(pnfm) = (n/m)h(p) where m is also a positive integer. Th 
implies that h(px) = xh(p) where x is a positive rational number, and hence c 
continuity when it is a positive real number. Finally, show that this implies h(J 
must take the form h(p) ex lnp. 

1.29 (*) mm Consider an M-state discrete random variable X, and use Jensen's il 
equality in the form ( 1.115) to show that the entropy of its distribution p( x) satisfi, 

H[x] ~ lnM. 

1.30 (**) Evaluate the Kullback-Leibler divergence (1.113) between two GaussiaJ 
p(x) = N(x!J.£, 0"

2 ) and q(x) = N(xlm, s2
). 
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Table 1.3 The joint distribution p(x, y) for two binary variables 
x and y used in Exercise 1.39. 

y 
0 1 

0 1/3 113 
X 

1 0 1/3 

1.31 (**) B!IJ Consider two variables x andy havingjointdistributionp(x, y). Show 
that the differential entropy of this pair of variables satisfies 

H[x, y] ~ H[x] + H[y] (1.152) 

with equality if, and only if, x and y are statistically independent. 

1.32 (*) Consider a vector x of continuous variables with distribution p(x) and corre­
sponding entropy H[x]. Suppose that we make a nonsingular linear transformation 
of x to obtain a new variable y = Ax. Show that the corresponding entropy is given 
by H[y] = H[x] +In IAI where lA I denotes the determinant of A. 

1.33 (**) Suppose that the conditional entropy H[yjx] between two discrete random 
variables x and y is zero. Show that, for all values of x such that p( x) > 0, the 
variable y must be a function of x, in other words for each x there is only one value 
ofy such thatp(yjx) -I- 0. 

1.34 (**) 1111!1 Use the calculus of variations to show that the stationary point of the 
functional (1.108) is given by (1.108). Then use the constraints (1.105), (1.106), 
and ( 1.107) to eliminate the Lagrange multipliers and hence show that the maximum 
entropy solution is given by the Gaussian (1.109). 

1.35 (*) 1111!1 Use the results (1.106) and (1.107) to show that the entropy of the 
univariate Gaussian (1.109) is given by (1.110). 

1.36 (*) A strictly convex function is defined as one for which every chord lies above 
the function. Show that this is equivalent to the condition that the second derivative 
of the function be positive. 

1 .37 ( *) Using the definition ( 1.111) together with the product rule of probability, prove 
the result (1.112). 

1.38 ( * *) 1111!1 Using proof by induction, show that the inequality ( 1.114) for convex 
functions implies the result (1.115). 

1.39 ( * * *) Consider two binary variables x and y having the joint distribution given in 
Table 1.3. 

Evaluate the following quantities 

(a) H[x] 
(b) H[y] 

(c) H[yjx] 
(d) H[xjy] 

(e) H[x,y] 
(f) I[x, y]. 

Draw a diagram to show the relationship between these various quantities. 
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1.40 (*) By applying Jensen's inequality (1.115) with f(x) = lnx, show that the arith­
metic mean of a set of real numbers is never less than their geometrical mean. 

1.41 ( *) mm!J Using the sum and product rules of probability, show that the mutual 
information I(x, y) satisfies the relation (1.121). 




