7

Model Assessment and Selection

7.1 Introduction

The generalization performance of a learning method relates to its predic-
tion capability on independent test data. Assessment of this performance
is extremely important in practice, since it guides the choice of learning
method or model, and gives us a measure of the quality of the ultimately
chosen model.

In this chapter we describe and illustrate the key methods for perfor-
mance assessment, and show how they are used to select models. We begin
the chapter with a discussion of the interplay between bias, variance and
model complexity.

7.2 Bias, Variance and Model Complexity

Figure 7.1 illustrates the important issue in assessing the ability of a learn-
ing method to generalize. This is the same as Figure 2.11; because it is
so important, we display it here again. Consider first the case of a quan-
titative or interval scale response. We have a target variable Y, a vector
of inputs X, and a prediction model f(X) that has been estimated from
. a training sample. The loss function for measuring errors between ¥ and

194 7. Model Assessment and. Selection

High Bias Low Bias
Low Variance High Variance
o e e T e B

Test Sample

Prediction Error

#

Training Sample

Low) High
Model Complexity

FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied.

F(X) is denoted by L(Y, f(X)). Typical choices are
. - F(X))? squared error
LG A&) = {|Y — f(X)] absolute error. (7-1)

Test error, also referred to as generalization error, is the expected predic-
tion error over an independent test sample

Err = B[L(Y, f(X))], (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Note that this expectation averages anything that is random,
including the randomness in the training sample that produced f . Training
error is the average loss over the training sample

o = > L (@) | (73)

We would like to know the test error of our estimated model f . As the model
becomes more and more complex, it is able to adapt to more complicated
underlying structures (a decrease in bias), but the estimation error increases
(an increase in variance). In between there is an optimal model complexity
that gives minimum test error. '

Unfortunately training error is not a good estimate of the test error,
as seen in Figure 7.1. Training error consistently decreases with model
complexity, typically dropping to zero if we increase the model complexity
enough. However, a model with zero training error is overfit to the training
data and will typically generalize poorly.

7.2 Bias, Variance and Model Complexity 195

The story is similar for a qualitative or categorical response G taking one
of K values in a set G, labelled for convenience as 1,2,..., K. Typically
we model the probabilities pr(X) = Pr(G = k|X) (or some monotone
transformations f(X)), and then G(X) = argmax;, p(X). In some cases,
such as 1-nearest neighbor classification (Chapters 2 and 13) we produce
& (X) directly. Typical loss functions are

L(G,G(X)) = I(G+#G(X)) 0-1loss, (7.4)
K
L(G,p(X)) = -2) I(G=k)logpr(X)
= —21;gﬁg(X) log-likelihood. (7.5)

The log-likelihood is sometimes referred to as cross-entropy loss or deviance.

Again, test error is given by Err = E[L(G,G(X))], the expected mis-
classification rate, or Err = E[L(G,p(X))]. Training error is the sample
analogue, for example,

N
= =g .
oI = E log Py, (z1), (7.6)

=]

the sample log-likelihood for the model.

The log-likelihood can be used as a loss-function for general response
densities, such as the Poisson, gamma, exponential, log-normal and others.
If Pro(x)(Y') is the density of Y, indexed by a parameter §(.X) that depends
on the predictor X, then

L(Y, Q(X)) = -2 log PTQ(X)(Y). (7.7)

The “2” in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use ¥ and
f(X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the test
error curve for a model. Typically our model will have a tuning parameter
or parameters o and so we can write our predictions as fo(z). The tuning
parameter varies the complexity of our model, and we wish to find the value
of a that minimizes error, that is, produces the minimum of the test error
curve in Figure 7.1. Having said this, for brevity we will often suppress the
dependence of f(z) on a.

It is important to note that there are in fact two separate goals that we
might have in mind:

Model selection: estimating the performance of different models in order
to choose the (approximate) best one.

196 7. Model Assessment and Selection

Model assessment: having chosen a final model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test set
repeatedly, choosing the model with smallest test set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as this depends on the signal-to-
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

The methods in this chapter are designed for situations where there is
insufficient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and
the complexity of the models being fit to the data.

The methods of this chapter approximate the validation step either an-
alytically (AIC, BIC, MDL, SRM) or by efficient sample re-use (cross-
validation and the bootstrap). Besides their use in model selection, we also
 examine to what extent each method provides a reliable estimate of test
error of the final chosen model.

Before jumping into these topics, we first explore in more detail the
nature of test error and the bias—variance tradeoff.

7.3 The Bias—Variance Decomposition

As in Chapter 2, if we assume that ¥ = f(X) + & where E(E) =0 shd
Var(e) = o2, we can derive an expression for the expected prediction error

7.3 The Bias—Variance Decomposition 197

of a regression fit f (X) at an input point X = zg, using squared-error loss:

Err(ze) = E[Y - f(z0))*|X = z(]
= 02 +[Ef(z0) = f(20)]” + Elf(20) — Ef (z0))”
= o? + Bias?(f(0)) + Var(f (z0))
= Trreducible Error + Bias® + Variance. (7.8)

The first term is the variance of the target around its true mean f (:co) and
cannot be avoided no matter how well we estimate f(x¢), unless o2 = 0.
The second term is the squared bias, the amount by which the average of
our estimate differs from the true mean; the last term is the variance; the
expected squared deviation of f (zp) around its mean. Typically the more
complex we make the model f , the lower the (squared) bias but the higher
the variance.

For the k-nearest-neighbor regression fit, these expressions have the sim-
ple form

Err(zo) = E[Y — fa(z0))?|X = zo]
k 2
= o+ [flwo) ~ 2 D fw)] +oik (79)
=1

Here we assume for simplicity that training inputs z; are fixed, and the ran-
domness arises from the y;. The number of neighbors k is inversely related
to the model complexity. For small k, the estimate fi(z) can potentially
adapt itself better to the underlying f(z). As we increase k, the bias—the
squared difference between f(zg) and the average of f(z) at the k-nearest
neighbors—will typically increase, while the variance decreases.

For a linear model fit fp(&) = ,BTx where the parameter vector 3 with
p components is fit by least squares, we have

Err(zo) = E[(Y — fp(20))’ IX—IO}
a? + [f(z0) — Bfp(z0)]® + ||In(zo)|P02. (7.10)

Here h(z) is the N-vector of linear weights that produce the fit f,(zo) =
zT(XTX)~1XTy, and hence Var[f,(zo)] = ||h(zo)||>s2. While this vari-
ance changes with zo, its average (over the sample values ;) is (p/N)oZ,
and hence

ZErr T;) =02 4+ — Z (z:) — BEf(z)]? + V aZ, (7.11)

the in-sample error. Here model complexity is directly related to the num-
ber of parameters p.

198 7. Model Assessment and Selection

The test error Err(zg) for a ridge regression fit Fo(zg) is identical in
form to (7.10), except the linear weights in the variance term are different:
h(zo) = X(XTX + al)"*zo. The bias term will also be different.

For a linear model family such as ridge regression, we can break down
the bias more finely. Let 3, denote the parameters of the best-fitting linear
approximation to f:

fu = argminE (F(x) - B7x)". (7.12)

Here the expectation is taken with respect to the distribution of the input
variables X . Then we can write the average squared bias as

2 2 3 " 2
Eﬂ?o {f(xﬂ) - Efa(x(})} == ESGD [f(xﬁ) = /35%} = E:Eo [63330 =R E.ﬁg\;xO}

= Ave[Model Bias|® + Ave[Estimation Bias]?
(T3

The first term on the right-hand side is the average squared model bias, the
error between the best-fitting linear approximation and the true function.
The second term is the average squared estimation bias, the error between
the average estimate E(3Tzg) and the best fitting linear approximation.

For linear models fit by ordinary least squares, the estimation bias is zero.
For restricted fits, such as ridge regression, it is positive, and we trade it off
with the benefits of a reduced variance. The model bias can only be reduced
by enlarging the class of linear models to a richer collection of models, by
including interactions and transformations of the variables in the model.

Figure 7.2 shows the bias—variance tradeoff schematically. In the case
of linear models, the model space is the set of all linear predictions from
p inputs and the black dot labeled “closest fit” is BT z. The blue-shaded
region indicates the error o. with which we see the truth in the training
sample.

Also shown is the variance of the least squares fit, indicated by the large
yellow circle centered at the black dot labelled “closest fit in population’.
Now if we were to fit a model with fewer predictors, or regularize the coef-
ficients by shrinking them toward zero (say), we would get the “shrunken
fit” shown in the figure. This fit has an additional estimation bias, due to
the fact that it is not the closest fit in the model space. On the other hand,
it has smaller variance. If the decrease in variance exceeds the increase in
(squared) bias, then this is worthwhile.

7.8.1 FEzample: Bias—Variance deeoﬁ

Figure 7.3 shows the bias—variance tradeoff for two simulated examples.
There are 50 observations and 20 predictors, uniformly distributed in the
hypercube [0, 1]2°. The situations are as follows:

7.3 The Bias—Variance Decomposition 199

. Closest fit in population
- - ‘Realization® »

Ry v

_fruth ccs MODEL
S _=€”f¢; L SPACE
M@dézb_ia's'/_' 7 - ,/ \

: ”Eé_timaﬁon'ﬁias’ i__‘ : / i/ Shrunken fit

- Estimation _

-

P o Vamance i

2T RESTRICTED
MODEL SPACE

8

FIGURE 7.2. Schematic of the behavior of bias and variance. The model space
18 the set of all possible predictions from the model, with the “closest fit” labeled
with a black dot. The model bias from the truth is shown, along with the variance,
indicated by the large yellow circle centered at the black dot labelled “closest fit
in population”. A shrunken or regularized fit is also shown, having additional
estimation bias, but smaller prediction error due to its decreased variance.

200 7. Model Assessment and Selection

Left panels: Y is 0 if X7 < 1/2 and 1if Xy > 1/2, and .we apply k-nearest
neighbors.

Right panels: Y is 1 if 230:1 X is greater than 5 and 0 otherwise, and we
use best subset linear regression of size p.

The top row is regression with squared error loss; the bottom row is classi-
fication with 0-1 loss. The figures show the prediction error (red), squared
bias (green) and variance (blue), all computed for a large test sample.

In the regression problems, bias and variance add to produce the predic-
tion error curves, with minima at about k = 5 for k-nearest neighbors, and
p > 10 for the linear model. For classification loss (bottom figures), some
interesting phenomena can be seen. The bias and variance curves are the
same as in the top figures, and prediction error now refers to misclassifi-
cation rate. We see that prediction error is no longer the sum of squared
bias and variance. For the k-nearest neighbor classifier, prediction error
decreases or stays the same as the number of neighbors is increased to 20,
despite the fact that the squared bias is rising. For the linear model classi-
fier the minimum occurs for p > 10 as in regression, but the improvement
over the p = 1 model is more dramatic. We see that bias and variance seem
to interact in determining prediction error.

“Why does this happen? There is a simple explanation for the first phe-
nomenon. Suppose at a given input point, the true probability of class 1 is
0.9 while the expected value of our estimate is 0.6. Then the squared bias—
(0.6 — 0.9)*—is considerable, but the prediction error is zero since we make
the correct decision. In other words, estimation errors that leave us on the
right side of the decision boundary don’t hurt. Exercise 7.2 demonstrates
this phenomenon analytically, and also shows the interaction effect between
bias and variance.

The overall point is that the bias-variance tradeoff behaves differently
for 0-1 loss than it does for squared error loss. This in turn means that
the best choices of tuning parameters may differ substantially in the two
settings. One should base the choice of tuning parameter on an estimate of
prediction error, as described in the following sections.

7.4 Optimism of the Training Error Rate

Typically, the training error rate
eIT = EZL(%JE(%)) (7.14)

will be less than the true error Err = E[L(Y, f(X))], because the same
data is being used to fit the method and assess its error. A fitting method

s

k-NN - Regression

7.4 Optimism of the Training Error Rate 201

0.5

0.4

0.3

0.2

0.1

0.0
Te

Number of Neighbors k

k-NN - Classification

o

0.5

0.4

0.2

0.1

0.0

05

Mumber of Neighbors k

Linear Model - Regression

0.2 0.3 0.4 0.5

0.1

0.0

5 10 15 20

Subset Size p

Linear Model - Classification

0.4

0.3

02

0.1

3 1

-y
v

-

-

2

P i "V

5 10 15 20
Subset Size p

FIGURE 7.3. Prediction error (red), squared bias (green) and variance (blue)
for a simulated example. The top row is regression with squared error loss; the
bottom row 4s classification with 0-1 loss. The models are k-nearest neighbors
(left) and best subset regression of size p (right). The variance and bias curves
are the same in regression and classification, but the prediction error curve is

different.

202 7. Model Assessment and Selection

typically adapts to the training data, and hence the apparent or training
error et will be an overly optimistic estimate of the generalization error
Err.

Part of the discrepancy is due to where the evaluation points occur. Err
is a kind of extra-sample error, since the test feature vectors don’t need to
coincide with the training feature vectors. The nature of the optimism in
erT is easiest to understand when we focus not on Err but on the in-sample
error

N
1 z ew |
Errin = _N — EyEynewL(Yén ,f(ﬂ?l)) (715)

The Y™ notation indicates that we observe N new response values at
each of the training points z;, ¢ = 1,2,... , N. We define the optimism as
the expected difference between Err;, and the training error err:

op = Erry, — By (€17). (7.16)

This is typically positive since et is usually biased downward as an estimate
of prediction error.

For squared error, 0-1, and other loss functions, one can show quite
generally that

N
Clo k= % ; Cov(9:, yi), (7.17)
where Cov indicates covariance. Thus the amount by which T underesti-
mates the true error depends on how strongly y; affects its own prediction.
The harder we fit the data, the greater Cov(§;,y;) will be, thereby increas-
ing the optimism. Exercise 7.4 proves this result for squared error loss where
7; is the fitted value from the regression. For 0-1 loss, §; € {0, 1} is the
classification at z;, and for entropy loss, ; € [0, 1] is the fitted probability
of class 1 at z;.
In summary, we have the important relation

N

S 2 .
Erry, = Ey(&rT) + ~ 2 Cov(§i, ys)- (7.18)

This expression simplifies if §; is obtained by a linear fit with d inputs
or basis functions. For example,

N
S Cov(,) = do? (7.19)

=1

for the additive error model ¥ = f(X) + ¢, and so

Erry, = Eyeft + 2 - %02 (7.20)

£

G R e e e B s SR R e T e S

7.5 Estimates of In-Sample Prediction Error 203

The optimism increases linearly with the number d of inputs or basis func-
tions we use, but decreases as the training sample size increases. Versions
of (7.20) hold approximately for other error models, such as binary data
and entropy loss.

An obvious way to estimate prediction error is to estimate the optimism
and then add it to the training error rate €rr. The methods described in the
next section—AIC, BIC and others—work in this way, for a special class
of estimates that are linear in their parameters.

In contrast, the cross-validation and bootstrap methods, described later
in the chapter, are direct estimates of the extra-sample error Err. These
general tools can be used with any loss function, and with nonlinear, adap-
tive fitting techniques.

In-sample error is not usually of direct interest since future values of the
features are not likely to coincide with with their training set values. But for
comparison between models, in-sample error is convenient and often leads
to effective model selection. The reason is that the relative (not absolute)
size of the error is what matters.

7.5 Estimates of In-Sample Prediction Error

The general form of the in-sample estimates is
Erty, = & + 0D, (7.21)

where Op is an estimate of the optimism.
Using expression (7.20), applicable when d parameters are fit under
squared error loss, leads to the so-called C, statistic,

Cp =&T + 2+ —6&2. (7:22)

Here &2 is an estimate of the noise variance, obtained from the mean-
squared error of a low-bias model. Using this criterion we adjust the training
error by a factor proportional to the number of basis functions used.

The Akaike information criterion is a similar but more generally appli-
cable estimate of Errs, when a log-likelihood loss function is used. It relies
on a relationship similar to (7.20) that holds asymptotically as N — 00

2 d
~2-EflogPrys(Y)] = e E[loglik] + 2 - N (7.23)

Here Prg(Y) is a family of densities for ¥ (containing the “true” density),

6 is the maximum-likelihood estimate of #, and “loglik” is the maximized
log-likelihood:

N
loglik = Z log Pry(y:)- (7.24)
i=1

204 7. Model Assessment and Selection

For example, for the logistic regression model, using the binomial log-
likelihood, we have

2 d
AIC= —— - loglik +2 - . (7.25)

For the Gaussian model (with variance o2 = 62 assumed known), the AIC
statistic is equivalent to Cj,, and so we refer to them collectively as AIC.

To use AIC for model selection, we simply choose the model giving small-
est AIC over the set of models considered. For nonlinear and other complex
models, we need to replace d by some measure of model complexity. We
discuss this in Section 7.6.

Given a set of models f,(z) indexed by a tuning parameter ¢, denote
by ert(c) and d(a) the training error and number of parameters for each
model. Then for this set of models we define

AIC(a) = &F(a) + 2 %“)&3. | (7.26)
The function AIC(«) provides an estimate of the test error curve, and we
find the tuning parameter & that minimizes it. Our final chosen model
is fa(z). Note that if the basis functions are chosen adaptively, (7.19) no
longer holds. For example, if we have a total of p inputs, and we choose
the best-fitting linear model with d < p inputs, the optimism will exceed
(2d/N)c?. Put another way, by choosing the best-fitting model with d
inputs, the effective number of parameters fit is more than d.

Figure 7.4 shows AIC in action for the phoneme recognition example
of Section 5.2.3 on page 124. The input vector is the log-periodogram of
the spoken vowel, quantized to 256 uniformly spaced frequencies. A lin-
ear logistic regression model is used to predict the phoneme class, with
coefficient function S(f) = Zi‘f:l Fom (f)0m, an expansion in M spline ba-
sis functions. For any given M, a basis of natural cubic splines is used
for the h,,, with knots chosen uniformly over the range of frequencies (so
d(a) = d(M) = M). Using AIC to select the number of basis functions will
approximately minimize Err(M) for both entropy and 0-1 loss.

The simple formula

N
(2/N) > Cov(gi,us) = (2d/N)a?

=1

holds exactly for linear models with additive errors and squared error loss,
and approximately for linear models and log-likelihoods. In particular, the
formula does not hold in general for 0-1 loss (Efron, 1986), although many
authors nevertheless use it in that context (right panel of Figure 7.4).

i T

7.6 The Effective Number of Parameters 205

Log-likelihood Loss 0-1 Loss
w o l§ 1
o) —— Train
——— Test o) ; O
—— AC B
o (]
ol <
3 HE S - /O 2
(=) (] = \
&= =
E :i) 7 8 O§8 /O
= = O \
i / 7] (S O.—«—O
E’ 8 E o \O /O
N / 5 6.0
2 1 MO~ . s 0—g~ =0
— \@ ! =
\ f@r—do =
@ng% 0
-""“O (] \
o =
S - £y S
9} e}
2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Basis Functions Number of Basis Functions

FIGURE 7.4. AIC wused for model selection for the phoneme TeCogni-
tion example of Section 5.2.3. The logistic regression coefficient function
B(f) =M hn(f)6m is modeled as an expansion in M spline basis functions.
In the left panel we see the AIC statistic used to estimate Errin using log-likelihood
loss. Included is an estimate of Err based on an independent test sample. It does
well except for the extremely over-parametrized case (M = 256 parameters for
N = 1000 observations). In the right panel the same is done for 0-1 loss. Al-
though the AIC formula does not strictly apply here, it does a reasonable job in
this case.

7.6 The Effective Number of Parameters

The concept of “number of parameters” can be generalized, especially to
models where regularization is used in the fitting. Suppose we stack the
outcomes y1,%2,...,Yn into a vector y, and similarly for the predictions
y. Then a linear fitting method is one for which we can write

¥ =Sy, (7.27)

where S is an NV x N matrix depending on the input vectors z; but not on
the y;. Linear fitting methods include linear regression on the original fea-
tures or on a derived basis set, and smoothing methods that use quadratic
shrinkage, such as ridge regression and cubic smoothing splines. Then the
effective number of parameters is defined as

48] = tface(S), (7.28)

the sum of the diagonal elements of S. Note that if S is an orthogonal-
projection matrix onto a basis set spanned by M features, then trace(S) =

206 7. Model Assessment and Selection |

M. Tt turns out that trace(S) is exactly the correct quantity to replace d as
the number of parameters in the C, statistic (7.22) (Exercise 7.4 and 7.5).
We motivate d = trace(S) in some detail in Section 5.4.1 on page 129.

For models like neural networks, in which we minimize an error function
R(w) with weight decay penalty (regularization) a} ., wy,, the effective
number of parameters has the form

B
dla) =) 7 ”;a, (7.29)
m=1

where the 0,, are the eigenvalues of the Hessian matrix 6?R(w)/dwdw™.
Expression (7.29) follows from (7.28) if we make a quadratic approximation
to the error function at the solution (Bishop, 1995).

7.7 The Bayesian Approach and BIC

The Bayesian information criterion (BIC), like AIC, is applicable in settings
where the fitting is carried out by maximization of a log-likelihood. The
generic form of BIC is

BIC = —2 - loglik + (log N) - d. (7.30)

The BIC statistic (times 1/2) is also known as the Schwartz criterion
(Schwartz, 1979).

Under the Gaussian model, assuming the variance o2 is known, —2-loglik
equals (up to a constant) >, (y;— f(xi))? /o2, which is N -ett/c?2 for squared
error loss. Hence we can write

Nr__ d
BIC = U—g {err + (log N) - WUE]. (7.31)
Therefore BIC is proportional to AIC (C,), with the factor 2 replaced
by log N. Assuming N > e? = 7.4, BIC tends to penalize complex models
more heavily, giving preference to simpler models in selection. As with AIC,

o2 is typically estimated by the mean squared error of a low-bias model.

£
For classification problems, use of the multinomial log-likelihood leads to a
similar relationship with the AIC, using cross-entropy as the error measure.
Note however that the misclassification error measure does not arise in the
BIC context, since it does not correspond to the log-likelihood of the data
under any probability model.

Despite its similarity with AIC, BIC is motivated in quite a different
way. It arises in the Bayesian approach to model selection, which we now
describe.

Suppose we have a set of candidate models My, m = 1,..., M and
corresponding model parameters f,,,, and we wish to choose a best model

T e

7.7 The Bayesian Approach and BIC 207

from among them. Assuming we have a prior distribution Pr(6,,|M,,) for
the parameters of each model M,,, the posterior probability of a given
model is

Pr(Mp|Z) oc Pr(Mp,) Pr(Z|Mpm) (7.32)
s Pl - / Pr(Z(01m, Mo)PE(6rn | Mo) A6,
where Z represents the training data {:zcl,yz}?'r To compare two models
M., and M,, we form the posterior odds ‘

Pr{ M, |Z) _ Pr(Mpm) Pr(Z|M,,) (7.33)
Pr(M;|Z) Pr(M;) - Pr(Z|M,g) '

If the odds are greater than one we choose model m, otherwise we choose
model £. The rightmost quantity

_ Pr(Z|M,,)

BE) = mm

(7.34)

is called the Bayes factor, the contribution of the data toward the posterior
odds.

Typically we assume that the prior over models is uniform, so that
Pr(M,,) is constant. We need some way of approximating Pr(Z|M.,).
A so-called Laplace approximation to the integral followed by some other
simplifications (Ripley, 1996, page 64) to (7.32) gives

log Pr(Z| M,) = log Pr(Z|fm, Mys) — %ﬂi JogN +0(1). (7.35)

Here E}m is a maximum likelihood estimate and d,, is the number of free
parameters in model M,,. If we define our loss function to be

—2 10g Pr(Ziém, Mm):

this is equivalent to the BIC criterion of equation (7.30).

Therefore, choosing the model with minimum BIC is equivalent to choos-
ing the model with largest (approximate) posterior probability. But this
framework gives us more. If we compute the BIC criterion for a set of M,
models, giving BIC,,, m =1,2,... , M, then we can estimate the posterior
probability of each model M, as

¢~ +BICn
. 7.36
et (738

Thus we can estimate not only the best model, but also assess the relative
merits of the models considered.

208 7. Model Assessment and Selection

For model selection purposes, there is no clear choice between AIC and
BIC. BIC is asymptotically consistent as a selection criterion. What this
means is that given a family of models, including the true model, the prob-
ability that BIC will select the correct model approaches one as the sample
size N — oo. This is not the case for AIC, which tends to choose models
which are too complex as N — oo. On the other hand, for finite samples,
BIC often chooses models that are too simple, because of its heavy penalty
on complexity.

7.8 Minimum Description Length

The minimum description length (MDL) approach gives a selection cri-
terion formally identical to the BIC approach, but is motivated from an
optimal coding viewpoint. We first review the theory of coding for data
compression, and then apply it to model selection.

We think of our datum 2z as a message that we want to encode and
send to someone else (the “receiver”). We think of our model as a way of
encoding the datum, and will choose the most parsimonious model, that is
the shortest code, for the transmission.

Suppose first that the possible messages we might want to transmit are
21,22, .. , Zm. Our code uses a finite alphabet of length A: for example, we
might use a binary code {0, 1} of length A = 2. Here is an example with
four possible messages and a binary coding:

Message || 21 | 22 | 23 | 24
Code |[0 [10] 110 | 111

(7.37)

This code is known as an instantaneous prefix code: no code is the pre-
fix of any other, and the receiver (who knows all of the possible codes),
knows exactly when the message has been completely sent. We restrict our
discussion to such instantaneous prefix codes.

One could use the coding in (7.37) or we could permute the codes, for
example use codes 110,10,111,0 for z1, 22, 23, z4. How do we decide which
to use? It depends on how often we will be sending each of the messages.
If, for example, we will be sending z; most often, it makes sense to use the
shortest code 0 for z;. Using this kind of strategy—shorter codes for more
frequent messages—the average message length will be shorter.

In general, if messages are sent with probabilities Pr(z;),i =1,2,... ,4,
a famous theorem due to Shannon says we should use code lengths I; =
—log, Pr(z;) and the average message length satisfies

E(length) > —) Pr(z;)log, (Pr(z)). (7.38)

The right-hand side above is also called the entropy of the distribution
Pr(z;). The inequality is an equality when the probabilities satisfy p; =

7.8 Minimum Description Length 209

A~%. In our example, if Pr(z;) = 1/2,1/4,1/8,1/8, respectively, then the

coding shown in (7.37) is optimal and achieves the entropy lower bound.
In general the lower bound cannot be achieved, but. procedures like the

Huffmann coding scheme can get close to the bound. Note that with an

infinite set of messages, the entropy is replaced by — [Pr(z)log, Pr(z)dz.
From this result we glean the following:

To transmit a random variable z having probability density func-
tion Pr(z), we require about —log, Pr(z) bits of information.

We henceforth change notation from log, Pr(z) to log Pr(z) = log, Pr(z);
this is for convenience, and just introduces an unimportant multiplicative
constant.

Now we apply this result to the problem of model selection. We have
a model M with parameters 0, and data Z = (X,y) consisting of both
inputs and outputs. Let the (conditional) probability of the outputs under
the model be Pr(y|f, M, X), assume the receiver knows all of the inputs,
and we wish to transmit the outputs. Then the message length required to
transmit the outputs is

length = —log Pr(y|6, M, X) — log Pr(6| M), (7.39)

the log-probability of the target values given the inputs. The second term
is the average code length for transmitting the model parameters 8, while
the first term is the average code length for transmitting the discrepancy
between the model and actual target values. For example suppose we have
a single target y with y ~ N(6,0?), parameter § ~ N(0,1) and no input
(for simplicity). Then the message length is
2 2

length = constant + log o -+ (_yﬁ@_ - % (7.40)
Note that the smaller o, is the shorter the message length, since y is more
concentrated around 6.

The MDL principle says that we should choose the model that mini-
mizes (7.39). We recognize (7.39) as the (negative) log-posterior distribu-
tion, and hence minimizing description length is equivalent to maximizing
posterior probability. Hence the BIC criterion, derived as approximation to
log-posterior probability, can also be viewed as a device for (approximate)
model choice by minimum description length.

Note that we have ignored the precision with which a random variable
z is coded. With a finite code length we cannot code a continuous variable
exactly. However, if we code z within a tolerance ¢z, the message length
needed is the log of the probability in the interval [z, 2+ 02| which is well ap-
proximated by §zPr(z) if §z is small. Since log 6zPr(z) = log dz +log Pr(z),
this means we can just ignore the constant log 2 and use log Pr(z) as our
measure of message length, as we did above.

210 7. Model Assessment and Selection

2
-

sin(50 - x)
0.0

-1.0

0.0 0.2 0.4 06 0.8 1.0

x

FIGURE 7.5. The solid curve is the function sin(50z) for = € [0,1]. The blue
(solid) and green (hollow) points illustrate how the associated indicator function
I(sin(az) > 0) can shatter (separate) an arbitrarily large number of points by
choosing an appropriately high frequency a.

The preceding view of MDL for model selection says that we should
choose the model with highest posterior probability. However many Bayes-
ians would instead do inference by sampling from the posterior distribution.

7.9 Vapnik—Chernovenkis Dimension

A difficulty in using estimates of in-sample error is the need to specify the
number of parameters (or the complexity) d used in the fit. Although the
effective number of parameters introduced in Section 7.6 is useful for some
nonlinear models, it is not fully general. The Vapnik—Chernovenkis (VC)
theory provides such a general measure of complexity, and gives associated
bounds on the optimism. Here we give a brief review of this theory.

Suppose we have a class of functions {f(z,a)} indexed by a parameter
vector o, with z € IRF. Assume for now that f is an indicator function,
that is, takes the values 0 or 1. If @ = (ap, 1) and f is the linear indi-
cator function I(ag + af z > 0), then it seems reasonable to say that the
complexity of the class f is the number of parameters p + 1. But what
about f(z,a) = I(sina - z) where « is any real number and z € IR? The
function sin(50 - z) is shown in Figure 7.5. This is a very wiggly function
that gets even rougher as the frequency « increases, but it has only one
parameter: despite this, it doesn’t seem reasonable to conclude that it has
less complexity than the linear indicator function I(ag + ajz) in p = 1
dimension.

The Vapnik—Chernovenkis dimension is a way of measuring the complex-
ity of a class of functions by assessing how wiggly its members can be.

The VC dimension of the class {f(z,a)} is defined to be the
largest number of points (in some configuration) that can be
shattered by members of {f(z,a)}.

