
Appendix E. Lagrange Multipliers

Lagrange multipliers, also sometimes called undetermined multipliers, are used to
find the stationary points of a function of several variables subject to one or more
constraints.

Consider the problem of finding the maximum of a function f(x1, x2) subject to
a constraint relating x1 and x2, which we write in the form

g(x1, x2) = 0. (E.1)

One approach would be to solve the constraint equation (E.1) and thus express x2 as
a function of x1 in the form x2 = h(x1). This can then be substituted into f(x1, x2)
to give a function of x1 alone of the form f(x1, h(x1)). The maximum with respect
to x1 could then be found by differentiation in the usual way, to give the stationary
value x�

1 , with the corresponding value of x2 given by x�
2 = h(x�

1).
One problem with this approach is that it may be difficult to find an analytic

solution of the constraint equation that allows x2 to be expressed as an explicit func-
tion of x1. Also, this approach treats x1 and x2 differently and so spoils the natural
symmetry between these variables.

A more elegant, and often simpler, approach is based on the introduction of a
parameter λ called a Lagrange multiplier. We shall motivate this technique from
a geometrical perspective. Consider a D-dimensional variable x with components
x1, . . . , xD. The constraint equation g(x) = 0 then represents a (D−1)-dimensional
surface in x-space as indicated in Figure E.1.

We first note that at any point on the constraint surface the gradient ∇g(x) of
the constraint function will be orthogonal to the surface. To see this, consider a point
x that lies on the constraint surface, and consider a nearby point x + ε that also lies
on the surface. If we make a Taylor expansion around x, we have

g(x + ε) � g(x) + εT∇g(x). (E.2)

Because both x and x+ε lie on the constraint surface, we have g(x) = g(x+ε) and
hence εT∇g(x) � 0. In the limit ‖ε‖ → 0 we have εT∇g(x) = 0, and because ε is
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Figure E.1 A geometrical picture of the technique of La-
grange multipliers in which we seek to maximize a
function f(x), subject to the constraint g(x) = 0.
If x is D dimensional, the constraint g(x) = 0 cor-
responds to a subspace of dimensionality D − 1,
indicated by the red curve. The problem can
be solved by optimizing the Lagrangian function
L(x, λ) = f(x) + λg(x).
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then parallel to the constraint surface g(x) = 0, we see that the vector ∇g is normal
to the surface.

Next we seek a point x� on the constraint surface such that f(x) is maximized.
Such a point must have the property that the vector ∇f(x) is also orthogonal to the
constraint surface, as illustrated in Figure E.1, because otherwise we could increase
the value of f(x) by moving a short distance along the constraint surface. Thus ∇f
and ∇g are parallel (or anti-parallel) vectors, and so there must exist a parameter λ
such that

∇f + λ∇g = 0 (E.3)

where λ �= 0 is known as a Lagrange multiplier. Note that λ can have either sign.
At this point, it is convenient to introduce the Lagrangian function defined by

L(x, λ) ≡ f(x) + λg(x). (E.4)

The constrained stationarity condition (E.3) is obtained by setting ∇xL = 0. Fur-
thermore, the condition ∂L/∂λ = 0 leads to the constraint equation g(x) = 0.

Thus to find the maximum of a function f(x) subject to the constraint g(x) = 0,
we define the Lagrangian function given by (E.4) and we then find the stationary
point of L(x, λ) with respect to both x and λ. For a D-dimensional vector x, this
gives D +1 equations that determine both the stationary point x� and the value of λ.
If we are only interested in x�, then we can eliminate λ from the stationarity equa-
tions without needing to find its value (hence the term ‘undetermined multiplier’).

As a simple example, suppose we wish to find the stationary point of the function
f(x1, x2) = 1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = x1 + x2 − 1 = 0, as

illustrated in Figure E.2. The corresponding Lagrangian function is given by

L(x, λ) = 1 − x2
1 − x2

2 + λ(x1 + x2 − 1). (E.5)

The conditions for this Lagrangian to be stationary with respect to x1, x2, and λ give
the following coupled equations:

−2x1 + λ = 0 (E.6)

−2x2 + λ = 0 (E.7)

x1 + x2 − 1 = 0. (E.8)
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Figure E.2 A simple example of the use of Lagrange multipli-
ers in which the aim is to maximize f(x1, x2) =
1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = 0

where g(x1, x2) = x1 + x2 − 1. The circles show
contours of the function f(x1, x2), and the diagonal
line shows the constraint surface g(x1, x2) = 0.

g(x1, x2) = 0
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Solution of these equations then gives the stationary point as (x�
1, x

�
2) = (1

2
, 1

2
), and

the corresponding value for the Lagrange multiplier is λ = 1.
So far, we have considered the problem of maximizing a function subject to an

equality constraint of the form g(x) = 0. We now consider the problem of maxi-
mizing f(x) subject to an inequality constraint of the form g(x) � 0, as illustrated
in Figure E.3.

There are now two kinds of solution possible, according to whether the con-
strained stationary point lies in the region where g(x) > 0, in which case the con-
straint is inactive, or whether it lies on the boundary g(x) = 0, in which case the
constraint is said to be active. In the former case, the function g(x) plays no role
and so the stationary condition is simply ∇f(x) = 0. This again corresponds to
a stationary point of the Lagrange function (E.4) but this time with λ = 0. The
latter case, where the solution lies on the boundary, is analogous to the equality con-
straint discussed previously and corresponds to a stationary point of the Lagrange
function (E.4) with λ �= 0. Now, however, the sign of the Lagrange multiplier is
crucial, because the function f(x) will only be at a maximum if its gradient is ori-
ented away from the region g(x) > 0, as illustrated in Figure E.3. We therefore have
∇f(x) = −λ∇g(x) for some value of λ > 0.

For either of these two cases, the product λg(x) = 0. Thus the solution to the

Figure E.3 Illustration of the problem of maximizing
f(x) subject to the inequality constraint
g(x) � 0.
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problem of maximizing f(x) subject to g(x) � 0 is obtained by optimizing the
Lagrange function (E.4) with respect to x and λ subject to the conditions

g(x) � 0 (E.9)

λ � 0 (E.10)

λg(x) = 0 (E.11)

These are known as the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn
and Tucker, 1951).

Note that if we wish to minimize (rather than maximize) the function f(x) sub-
ject to an inequality constraint g(x) � 0, then we minimize the Lagrangian function
L(x, λ) = f(x) − λg(x) with respect to x, again subject to λ � 0.

Finally, it is straightforward to extend the technique of Lagrange multipliers to
the case of multiple equality and inequality constraints. Suppose we wish to maxi-
mize f(x) subject to gj(x) = 0 for j = 1, . . . , J , and hk(x) � 0 for k = 1, . . . , K.
We then introduce Lagrange multipliers {λj} and {µk}, and then optimize the La-
grangian function given by

L(x, {λj}, {µk}) = f(x) +
J∑

j=1

λjgj(x) +
K∑

k=1

µkhk(x) (E.12)

subject to µk � 0 and µkhk(x) = 0 for k = 1, . . . , K. Extensions to constrained
functional derivatives are similarly straightforward. For a more detailed discussionAppendix D
of the technique of Lagrange multipliers, see Nocedal and Wright (1999).




