Appendix E. Lagrange Multipliers

Lagrange multipliers, also sometimes called *undetermined multipliers*, are used to find the stationary points of a function of several variables subject to one or more constraints.

Consider the problem of finding the maximum of a function $f(x_1, x_2)$ subject to a constraint relating x_1 and x_2, which we write in the form

$$g(x_1, x_2) = 0. \quad (E.1)$$

One approach would be to solve the constraint equation (E.1) and thus express x_2 as a function of x_1 in the form $x_2 = h(x_1)$. This can then be substituted into $f(x_1, x_2)$ to give a function of x_1 alone of the form $f(x_1, h(x_1))$. The maximum with respect to x_1 could then be found by differentiation in the usual way, to give the stationary value x_1^*, with the corresponding value of x_2 given by $x_2^* = h(x_1^*)$.

One problem with this approach is that it may be difficult to find an analytic solution of the constraint equation that allows x_2 to be expressed as an explicit function of x_1. Also, this approach treats x_1 and x_2 differently and so spoils the natural symmetry between these variables.

A more elegant, and often simpler, approach is based on the introduction of a parameter λ called a Lagrange multiplier. We shall motivate this technique from a geometrical perspective. Consider a D-dimensional variable x with components x_1, \ldots, x_D. The constraint equation $g(x) = 0$ then represents a $(D-1)$-dimensional surface in x-space as indicated in Figure E.1.

We first note that at any point on the constraint surface the gradient $\nabla g(x)$ of the constraint function will be orthogonal to the surface. To see this, consider a point x that lies on the constraint surface, and consider a nearby point $x + \epsilon$ that also lies on the surface. If we make a Taylor expansion around x, we have

$$g(x + \epsilon) \simeq g(x) + \epsilon^T \nabla g(x). \quad (E.2)$$

Because both x and $x + \epsilon$ lie on the constraint surface, we have $g(x) = g(x + \epsilon)$ and hence $\epsilon^T \nabla g(x) \simeq 0$. In the limit $\|\epsilon\| \to 0$ we have $\epsilon^T \nabla g(x) = 0$, and because ϵ is
E. LAGRANGE MULTIPLIERS

Figure E.1 A geometrical picture of the technique of Lagrange multipliers in which we seek to maximize a function $f(x)$, subject to the constraint $g(x) = 0$. If x is D dimensional, the constraint $g(x) = 0$ corresponds to a subspace of dimensionality $D - 1$, indicated by the red curve. The problem can be solved by optimizing the Lagrangian function $L(x, \lambda) = f(x) + \lambda g(x)$.

then parallel to the constraint surface $g(x) = 0$, we see that the vector ∇g is normal to the surface.

Next we seek a point x^* on the constraint surface such that $f(x)$ is maximized. Such a point must have the property that the vector $\nabla f(x)$ is also orthogonal to the constraint surface, as illustrated in Figure E.1, because otherwise we could increase the value of $f(x)$ by moving a short distance along the constraint surface. Thus ∇f and ∇g are parallel (or anti-parallel) vectors, and so there must exist a parameter λ such that

$$\nabla f + \lambda \nabla g = 0 \quad (E.3)$$

where $\lambda \neq 0$ is known as a Lagrange multiplier. Note that λ can have either sign.

At this point, it is convenient to introduce the Lagrangian function defined by

$$L(x, \lambda) \equiv f(x) + \lambda g(x). \quad (E.4)$$

The constrained stationarity condition (E.3) is obtained by setting $\nabla_x L = 0$. Furthermore, the condition $\partial L/\partial \lambda = 0$ leads to the constraint equation $g(x) = 0$.

Thus to find the maximum of a function $f(x)$ subject to the constraint $g(x) = 0$, we define the Lagrangian function given by (E.4) and we then find the stationary point of $L(x, \lambda)$ with respect to both x and λ. For a D-dimensional vector x, this gives $D + 1$ equations that determine both the stationary point x^* and the value of λ. If we are only interested in x^*, then we can eliminate λ from the stationarity equations without needing to find its value (hence the term 'undetermined multiplier').

As a simple example, suppose we wish to find the stationary point of the function $f(x_1, x_2) = 1 - x_1^2 - x_2^2$ subject to the constraint $g(x_1, x_2) = x_1 + x_2 - 1 = 0$, as illustrated in Figure E.2. The corresponding Lagrangian function is given by

$$L(x, \lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1). \quad (E.5)$$

The conditions for this Lagrangian to be stationary with respect to x_1, x_2, and λ give the following coupled equations:

$$-2x_1 + \lambda = 0 \quad (E.6)$$
$$-2x_2 + \lambda = 0 \quad (E.7)$$
$$x_1 + x_2 - 1 = 0. \quad (E.8)$$
A simple example of the use of Lagrange multipliers in which the aim is to maximize \(f(x_1, x_2) = 1 - x_1^2 - x_2^2 \) subject to the constraint \(g(x_1, x_2) = 0 \) where \(g(x_1, x_2) = x_1 + x_2 - 1 \). The circles show contours of the function \(f(x_1, x_2) \), and the diagonal line shows the constraint surface \(g(x_1, x_2) = 0 \).

Solution of these equations then gives the stationary point as \((x_1^*, x_2^*) = (\frac{1}{2}, \frac{1}{2})\), and the corresponding value for the Lagrange multiplier is \(\lambda = 1 \).

So far, we have considered the problem of maximizing a function subject to an equality constraint of the form \(g(x) = 0 \). We now consider the problem of maximizing \(f(x) \) subject to an inequality constraint of the form \(g(x) \geq 0 \), as illustrated in Figure E.3.

There are now two kinds of solution possible, according to whether the constrained stationary point lies in the region where \(g(x) > 0 \), in which case the constraint is inactive, or whether it lies on the boundary \(g(x) = 0 \), in which case the constraint is said to be active. In the former case, the function \(g(x) \) plays no role and so the stationary condition is simply \(\nabla f(x) = 0 \). This again corresponds to a stationary point of the Lagrange function (E.4) but this time with \(\lambda = 0 \). The latter case, where the solution lies on the boundary, is analogous to the equality constraint discussed previously and corresponds to a stationary point of the Lagrange function (E.4) with \(\lambda \neq 0 \). Now, however, the sign of the Lagrange multiplier is crucial, because the function \(f(x) \) will only be at a maximum if its gradient is oriented away from the region \(g(x) > 0 \), as illustrated in Figure E.3. We therefore have \(\nabla f(x) = -\lambda \nabla g(x) \) for some value of \(\lambda > 0 \).

For either of these two cases, the product \(\lambda g(x) = 0 \). Thus the solution to the
problem of maximizing $f(x)$ subject to $g(x) \geq 0$ is obtained by optimizing the Lagrange function (E.4) with respect to x and λ subject to the conditions

$$
g(x) \geq 0 \quad \text{(E.9)}$$

$$
\lambda \geq 0 \quad \text{(E.10)}$$

$$
\lambda g(x) = 0 \quad \text{(E.11)}$$

These are known as the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951).

Note that if we wish to minimize (rather than maximize) the function $f(x)$ subject to an inequality constraint $g(x) \geq 0$, then we minimize the Lagrangian function $L(x, \lambda) = f(x) - \lambda g(x)$ with respect to x, again subject to $\lambda \geq 0$.

Finally, it is straightforward to extend the technique of Lagrange multipliers to the case of multiple equality and inequality constraints. Suppose we wish to maximize $f(x)$ subject to $g_j(x) = 0$ for $j = 1, \ldots, J$, and $h_k(x) \geq 0$ for $k = 1, \ldots, K$. We then introduce Lagrange multipliers $\{\lambda_j\}$ and $\{\mu_k\}$, and then optimize the Lagrangian function given by

$$
L(x, \{\lambda_j\}, \{\mu_k\}) = f(x) + \sum_{j=1}^{J} \lambda_j g_j(x) + \sum_{k=1}^{K} \mu_k h_k(x) \quad \text{(E.12)}
$$

subject to $\mu_k \geq 0$ and $\mu_k h_k(x) = 0$ for $k = 1, \ldots, K$. Extensions to constrained functional derivatives are similarly straightforward. For a more detailed discussion of the technique of Lagrange multipliers, see Nocedal and Wright (1999).