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CONTRIBUTION

We propose a fast randomized algorithm SRHT-DRR for solving large scale Ridge Regression
when the number of features is much larger than the number of observations (p > n > 1).
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The

exact solution in this case costs O(n“p) FLOPS. Our algorithm costs only O(nplog(psubs) + 7% Psubs )
FLOPS with a performance guarantee under the fixed design setting. Here pg,1,s < p is a parameter
which controls the trade-off between accuracy and efficiency.

MOTIVATION: APPROXIMATE XX '

Consider the dual formulation of Ridge Regression:
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where K = XX . The exact solution is

) = (K + n)\In)_lY

Problem: Computing XX ' costs O(n?p), slow for large n, p.

Solution: Construct Xgubs € X Psubs DY subsampling pguhs columns from X.
Use Kgups = LXsubSXT

Psubs

subs

as an approximation of K.
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An extra preconditioning step is necessary

before subsampling.

Psubs

ALGORITHM SKETCH

SRHT-DRR

Input: data X,Y, hyperparameter A and subsample size pgyups.
Output: dsruT-DRR, the dual weight vector.

Subsample P...scolumns

from the X matrix

e Precondition: Right multiply X by a p X p structured random matrix called a Randomized
Hadamard Transform.

e Subsampling: Subsample pg,ns columns from the preconditioned matrix and compute Kgyps.

e Compute dsrur-DRR = (Ksubs + nAL,) 1Y

PROPERTIES OF RANDOMIZED HADAMARD TRANSFORM

e Randomized Hadamard Transform smears energy among all columns.
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¢ Randomized Hadamard Transform multiplies fast due to its recursive structure. In SRHT-
DRR preconditioning costs is only O(nplog(psuns)) FLOPS.

EXPERIMENTS
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SRHT-DRR is implemented on both simulated and real
datasets with different pguns. The corresponding relative com-

putational cost and prediction accuracy are recorded. Here

: : _ FLOPS of SRHT-DRR
relative Computatlonal COSt = FLOPS of the exact ridge solution *

Simulation data: X of different sizes and Y are generated from
the fixed design model. We use MSE to evaluate prediction
accuracy.

Real data (ARCENE): Distinguish cancer versus normal pat-
terns from mass-spectrometric data. Prediction accuracy is eval-
uated by classification error on test data.

The exact ridge solution, PCA and randomized PCA are con-

sidered as baselines. Under p > n > 1 assumption all these
algorithms are slow.

We suggest to set psubs =~ dn (pink boxes in the plots).



