FAST RIDGE REGRESSION WITH SUBSAMPLED RANDOMIZED HADAMARD TRANSFORM Yichao Lu, Paramveer Dhillon, Dean P Foster and Lyle Ungar

CONTRIBUTION

We propose a fast randomized algorithm **SRHT-DRR** for solving large scale Ridge Regression when the number of features is much larger than the number of observations $(p \gg n \gg 1)$. The exact solution in this case costs $O(n^2 p)$ FLOPS. Our algorithm costs only $O(np \log(p_{subs}) + n^2 p_{subs})$ FLOPS with a performance guarantee under the fixed design setting. Here $p_{subs} \ll p$ is a parameter which controls the trade-off between accuracy and efficiency.

MOTIVATION: APPROXIMATE $\mathbf{X}\mathbf{X}^{\top}$

Consider the dual formulation of Ridge Regression:

$$\hat{\alpha}_{\lambda} = \arg\min_{\alpha \in n \times 1} \frac{1}{n} \|Y -$$

where $\mathbf{K} = \mathbf{X}\mathbf{X}^{\top}$. The exact solution is

$$\hat{\alpha}_{\lambda} = (\mathbf{K} + n\lambda)$$

Problem: Computing $\mathbf{X}\mathbf{X}^{\top}$ costs $O(n^2p)$, slow for large n, p. Solution: Construct $\mathbf{X}_{subs} \in n \times p_{subs}$ by subsampling p_{subs} columns from \mathbf{X} . Use $\mathbf{K}_{\text{subs}} = \frac{p}{p_{\text{subs}}} \mathbf{X}_{\text{subs}} \mathbf{X}_{\text{subs}}^{\top}$ as an approximation of \mathbf{K} .

WHY PRECONDITION

Good Case:
$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 1 & 1 & ... \\ 1 & 1 & 1 & 1 & ... \end{pmatrix}$$

Bad Case:
$$\mathbf{X} = \begin{pmatrix} 100 & 0 & 0 & \dots \\ 100 & 0 & 0 & \dots \end{pmatrix}$$

An extra preconditioning step is necessary before subsampling.

Algorithm Sketch

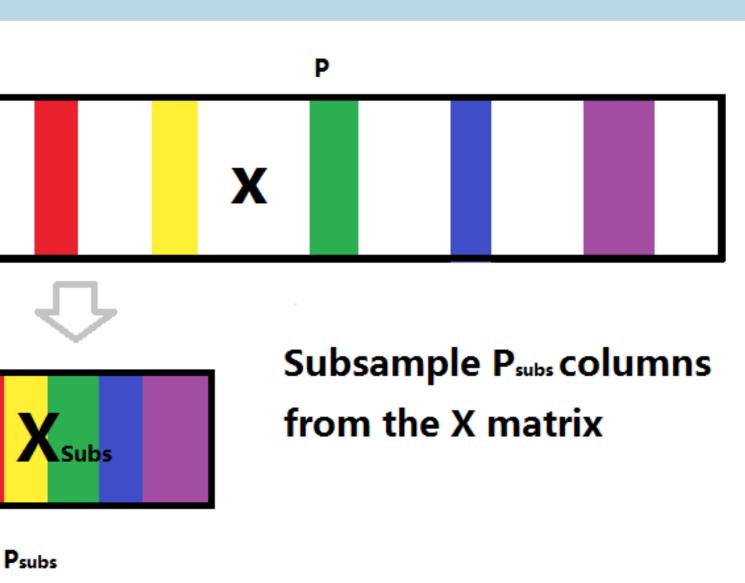
SRHT-DRR

Input: data \mathbf{X}, Y , hyperparameter λ and subsample size p_{subs} . Output: $\hat{\alpha}_{\mathbf{SRHT}-\mathbf{DRR}}$, the dual weight vector.

- Precondition: Right multiply X by a $p \times p$ structured random matrix called a Randomized Hadamard Transform.
- Subsampling: Subsample p_{subs} columns from the preconditioned matrix and compute \mathbf{K}_{subs} .
- Compute $\hat{\alpha}_{\mathbf{SRHT}-\mathbf{DRR}} = (\mathbf{K}_{\mathrm{subs}} + n\lambda I_n)^{-1}Y$

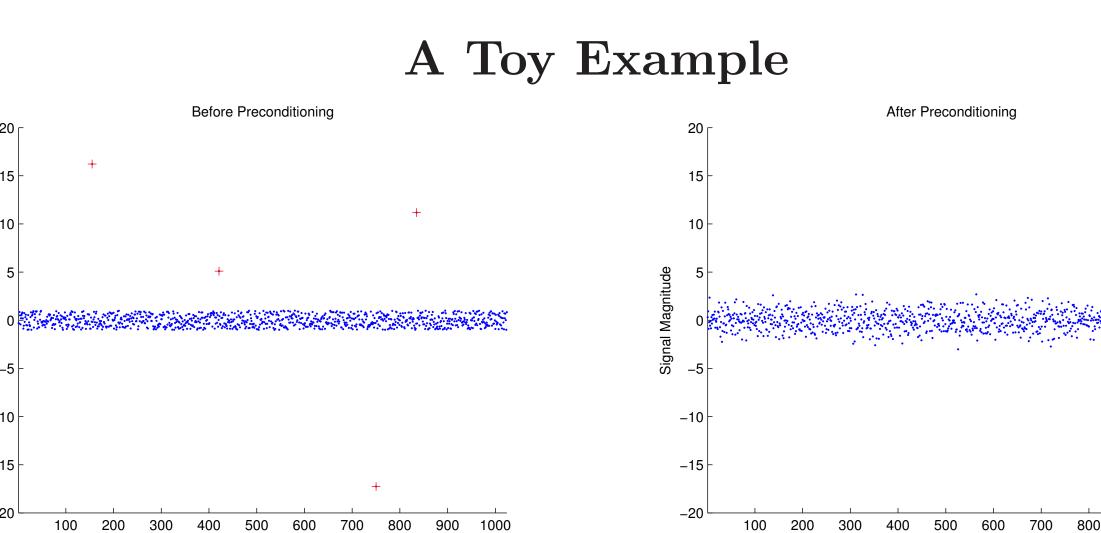
{yichaolu | foster }@wharton.upenn.edu , {dhillon | ungar}@cis.upenn.edu

 $\|\mathbf{K} \boldsymbol{\alpha}\|^2 + \lambda \boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha}$ $\lambda I_n)^{-1}Y$



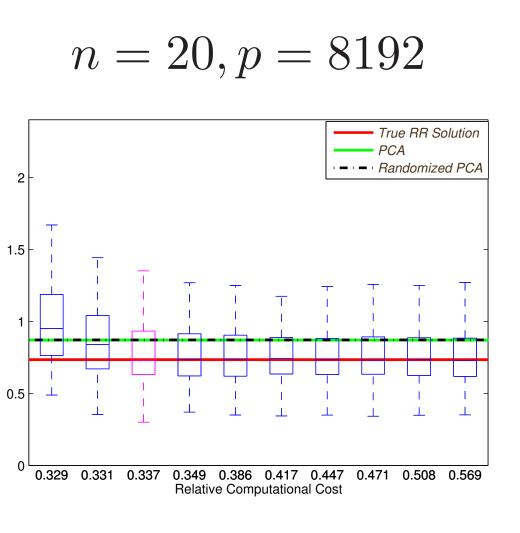
PROPERTIES OF RANDOMIZED HADAMARD TRANSFORM

• Randomized Hadamard Transform smears energy among all columns.

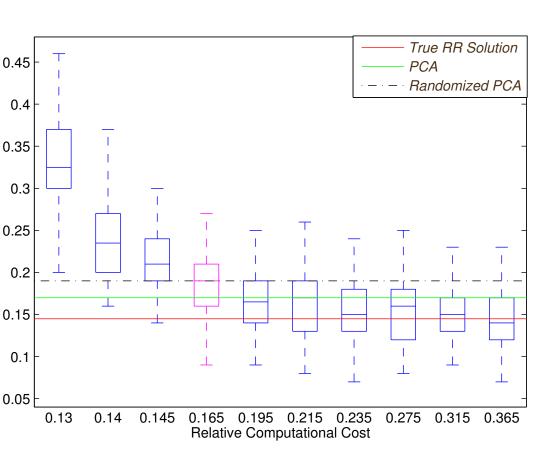


• Randomized Hadamard Transform multiplies fast due to its recursive structure. In **SRHT-DRR** preconditioning costs is only $O(np \log(p_{subs}))$ FLOPS.

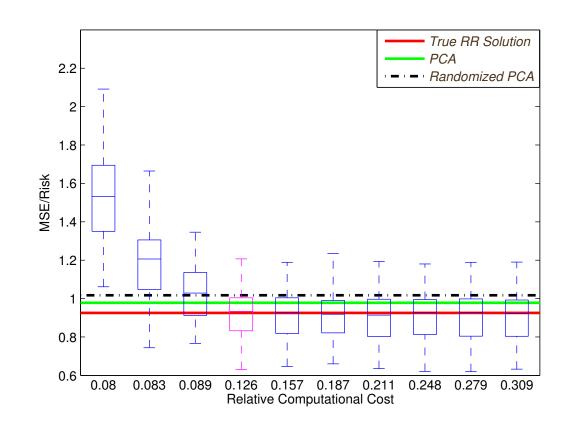
EXPERIMENTS



Real Data n=100,p=10000



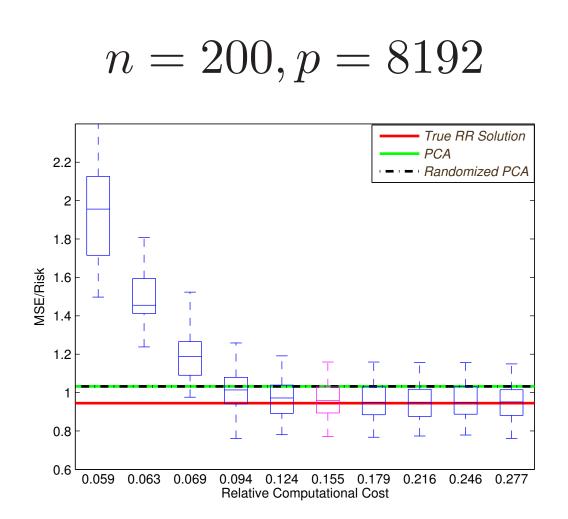
Simulation n = 100, p = 8192



- accuracy.
- uated by classification error on test data.
- algorithms are slow.

Left: Before preconditioning there are some high energy coordinates (red).

Right: The energy becomes widely spread after preconditioning.



• SRHT-DRR is implemented on both simulated and real datasets with different p_{subs} . The corresponding relative computational cost and prediction accuracy are recorded. Here relative computational cost = $\frac{\text{FLOPS of SRHT-DRR}}{\text{FLOPS of the exact ridge solution}}$.

• Simulation data: \mathbf{X} of different sizes and Y are generated from the fixed design model. We use MSE to evaluate prediction

• Real data (ARCENE): Distinguish cancer versus normal patterns from mass-spectrometric data. Prediction accuracy is eval-

• The exact ridge solution, PCA and randomized PCA are considered as baselines. Under $p \gg n \gg 1$ assumption all these

• We suggest to set $p_{subs} \approx 5n$ (pink boxes in the plots).