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Contribution
We propose a fast randomized algorithm SRHT-DRR for solving large scale Ridge Regression
when the number of features is much larger than the number of observations (p � n � 1). The
exact solution in this case costs O(n2p) FLOPS. Our algorithm costs only O(np log(psubs)+n2psubs)
FLOPS with a performance guarantee under the fixed design setting. Here psubs � p is a parameter
which controls the trade-off between accuracy and efficiency.

Motivation: Approximate XX>

Consider the dual formulation of Ridge Regression:

α̂λ = arg min
α∈n×1

1

n
‖Y −Kα‖2 + λα>Kα

where K = XX>. The exact solution is

α̂λ = (K + nλIn)−1Y

Problem: Computing XX> costs O(n2p), slow for large n, p.
Solution: Construct Xsubs ∈ n× psubs by subsampling psubs columns from X.
Use Ksubs = p

psubs
XsubsX

>
subs as an approximation of K.

Why Precondition

Good Case: X =

(
1 1 1 ... 1
1 1 1 ... 1

)

Bad Case: X =

(
100 0 0 ... 0
100 0 0 ... 0

)
An extra preconditioning step is necessary
before subsampling.

Properties of Randomized Hadamard Transform
• Randomized Hadamard Transform smears energy among all columns.

A Toy Example
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Before Preconditioning
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After Preconditioning

Left: Before preconditioning
there are some high energy co-
ordinates (red).
Right: The energy becomes
widely spread after precondi-
tioning.

• Randomized Hadamard Transform multiplies fast due to its recursive structure. In SRHT-
DRR preconditioning costs is only O(np log(psubs)) FLOPS.

Algorithm Sketch
SRHT-DRR
Input: data X, Y , hyperparameter λ and subsample size psubs.
Output: α̂SRHT−DRR, the dual weight vector.

• Precondition: Right multiply X by a p × p structured random matrix called a Randomized
Hadamard Transform.

• Subsampling: Subsample psubs columns from the preconditioned matrix and compute Ksubs.

• Compute α̂SRHT−DRR = (Ksubs + nλIn)−1Y

Experiments

Simulation
n = 20, p = 8192 n = 100, p = 8192 n = 200, p = 8192
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Real Data
n=100,p=10000
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• SRHT-DRR is implemented on both simulated and real
datasets with different psubs. The corresponding relative com-
putational cost and prediction accuracy are recorded. Here
relative computational cost = FLOPS of SRHT-DRR

FLOPS of the exact ridge solution .

• Simulation data: X of different sizes and Y are generated from
the fixed design model. We use MSE to evaluate prediction
accuracy.

• Real data (ARCENE): Distinguish cancer versus normal pat-
terns from mass-spectrometric data. Prediction accuracy is eval-
uated by classification error on test data.

• The exact ridge solution, PCA and randomized PCA are con-
sidered as baselines. Under p � n � 1 assumption all these
algorithms are slow.

• We suggest to set psubs ≈ 5n (pink boxes in the plots).


