

NEW SUBSAMPLING ALGORITHMS FOR FAST LEAST SQUARES REGRESSION

BACKGROUND

- Problem: Estimation of ordinary least squares (OLS) regression when $n \gg p$ (*n* observations, *p* features).
- OLS Regression: $Y = \mathbf{X}w_0 + \epsilon, \epsilon \sim \mathcal{N}(0, 1)$.
- MLE solution $\longrightarrow \hat{w} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} Y.$
 - + Running Time (FLOPS): $O(np^2)$.
 - + Error bound: $||w_0 \hat{w}|| \rightarrow O(\sqrt{\frac{p}{n}})$
- Current state of the art: Preconditioning based approaches [(Drineas)⁺ 07, (Rokhlin)⁺ 08].
 - 1. Transform the data with randomized Hadamard (SRHT) or Fast Fourier Transform (FFT).
 - 2. Uniformly subsample the resulting matrix ($n_{subs} = O(p)$).
 - 3. Estimate the OLS on this smaller matrix.
 - + Running Time (FLOPS): $O(\max(np \log p, n_{subs}p^2))$.
 - + Error bound: $||w_0 \hat{w}|| \rightarrow O(\sqrt{\frac{p}{n_{subs}}}).$

THE ALGORITHMS

- Either precondition the data matrix **X** and then subsample (*fixed design*) or directly subsample (*subgaussian random design*) (If you believe the data is i.i.d.).
 - 1. Full Subsampling Algorithm (FS) Subsample X and Y, then $\hat{w}_{FS} = (\mathbf{X}_{subs}^{\top} \mathbf{X}_{subs})^{-1} \mathbf{X}_{subs}^{\top} Y_{subs}$.
 - + Similar to [(Drineas)⁺ 07], but novel error analysis.
 - 2. Covariance Subsampling Algorithm (CovS) $\rightarrow \hat{w}_{CovS} = (\mathbf{X}_{subs}^{\top} \mathbf{X}_{subs})^{-1} \mathbf{X}^{\top} Y.$
 - 3. **Uluru** \rightarrow Two stage algorithm
 - (a) Stage 1: Use **FS** to estimate \hat{w}_{FS} .
 - (b) Stage 2: Use **CovS** to estimate $\hat{w}_{correct}$ on the remaining observations $(n_{rem} = n \setminus n_{subs})$.
 - (c) Perform Sampling Correction: $\hat{w}_{Uluru} = \hat{w}_{FS} + \hat{w}_{correct}$.

Uluru

Methods

• We do not increase the error of **Uluru** by using less data in estimating the covariance matrix. So our estimate of the *quadratic* term is as solid as the rock formation **Uluru**!

5	Running Time	Error
	O(FLOPS)	bound
	$O(n \ p^2)$	$O(\sqrt{p/n})$
	$O(nr \ p^2)$	$O(\sqrt{p/nr})$
	$O(nr \ p^2 + n \ p)$	*
	$O(nr \ p^2 + n \ p)$	$O(\sqrt{p/n})$

PARAMVEER S. DHILLON¹, YICHAO LU², DEAN FOSTER² AND LYLE UNGAR¹ {¹CIS,²STATISTICS (WHARTON)} UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA, U.S.A

THEORY (SUMMARY)

• When $n_{subs} \ll n_{rem}$, keeping only the dominating terms, the results can be summarized as: With failure probability less than some fixed number, the algorithms have the following error bounds.

. **FS**
$$\longrightarrow O(\sigma \sqrt{\frac{p}{n_{subs}}}).$$

$$L \quad \mathbf{CovS} \longrightarrow O(\sqrt{\frac{p}{n_{subs}}} \|w\| + \sigma \sqrt{\frac{p}{n}}).$$

5. **Uluru**
$$\longrightarrow O(\sigma \frac{p}{n_{subs}} + \sigma \sqrt{\frac{p}{n}}).$$

- If the second term for the error of the **Uluru** algorithm dominates, i.e. if $r = \frac{n_{subs}}{n} > O(\sqrt{p/n})$ then the error bound of **Uluru** $\approx O(\sigma \sqrt{\frac{p}{n}})$ (completely independent of r!).
- The threshold for r only depends on the properties of design matrix (n, p) and not on the noise level σ .
 - **FS** and **CovS** do not have this property.

EXPERIMENTS

• Results for synthetic datasets (Plots 1-2, low signal and high signal) and for real world datasets (Plots 3-4, CPUSMALL, CADATA). Color scheme: + (Green)-FS, + (Blue)-CovS, + (Red)-Uluru. The solid lines indicate no preconditioning (i.e. random design) and dashed lines indicate fixed design with Randomized Hadamard preconditioning. The FLOPS reported are the theoretical values.

CONCLUSION

Uluru has a runtime of O(np) and obtains error bound of O($\sqrt{\frac{p}{p}}$) which is the same as full OLS and is independent of amount of subsampling.