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BACKGROUND
• Problem: Estimation of ordinary least squares (OLS) regression when n� p

(n observations, p features).

• OLS Regression: Y =Xw0 + ε, ε ∼ N (0, 1).

• MLE solution −→ ŵ=(X>X)−1X>Y .

+ Running Time (FLOPS): O(np2).

+ Error bound: ‖w0 − ŵ‖ → O(
√

p
n )

• Current state of the art: Preconditioning based approaches [(Drineas)+ 07, (Rokhlin)+ 08 ].

1. Transform the data with randomized Hadamard (SRHT) or Fast Fourier Transform (FFT).

2. Uniformly subsample the resulting matrix (nsubs = O(p)).

3. Estimate the OLS on this smaller matrix.

+ Running Time (FLOPS): O(max(np log p, nsubsp
2)).

+ Error bound: ‖w0 − ŵ‖ → O(
√

p
nsubs

).

THE ALGORITHMS
• Either precondition the data matrix X and then subsample (fixed design) or directly subsample (sub-

gaussian random design) (If you believe the data is i.i.d.).

1. Full Subsampling Algorithm (FS) Subsample X and Y, then ŵFS=(Xsubs
>Xsubs)

−1Xsubs
>Ysubs.

+ Similar to [(Drineas)+ 07], but novel error analysis.

2. Covariance Subsampling Algorithm (CovS) −→ ŵCovS=(Xsubs
>Xsubs)

−1X>Y .

3. Uluru −→ Two stage algorithm

(a) Stage 1: Use FS to estimate ŵFS .

(b) Stage 2: Use CovS to estimate ŵcorrect on the remaining observations (nrem = n\nsubs).

(c) Perform Sampling Correction: ŵUluru = ŵFS + ŵcorrect.

• We do not increase the error of Uluru by using less data in estimating the covariance matrix. So
our estimate of the quadratic term is as solid as the rock formation Uluru!

THEORY (SUMMARY)
• When nsubs � nrem, keeping only the dominating terms, the results can be summarized as: With

failure probability less than some fixed number, the algorithms have the following error bounds.

1. FS −→ O(σ
√

p
nsubs

).

2. CovS −→ O(
√

p
nsubs

‖w‖+ σ
√

p
n ).

3. Uluru −→ O(σ p
nsubs

+ σ
√

p
n ).

• If the second term for the error of the Uluru algorithm dominates, i.e. if r(= nsubs

n ) > O(
√
p/n)

then the error bound of Uluru ≈ O(σ
√

p
n ) (completely independent of r!).

• The threshold for r only depends on the properties of design matrix (n, p) and not on the noise
level σ.

- FS and CovS do not have this property.

EXPERIMENTS
• Results for synthetic datasets (Plots 1-2, low signal and high signal) and for real world datasets (Plots

3-4, CPUSMALL, CADATA). Color scheme: + (Green)-FS, + (Blue)-CovS, + (Red)-Uluru. The
solid lines indicate no preconditioning (i.e. random design) and dashed lines indicate fixed design
with Randomized Hadamard preconditioning. The FLOPS reported are the theoretical values.
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CONCLUSION

Uluru has a runtime of O(np) and obtains error bound of O(
√

p
n ) which is the same as full OLS and

is independent of amount of subsampling.


