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BACKGROUND

e Problem: Estimation of ordinary least squares (OLS) regression when n > p
(n observations, p features).

e OLS Regression: Y=Xuwyg + ¢, € ~ N (0, 1).
¢ MLE solution — w=(X"X)"1X 'Y
+ Running Time (FLOPS): O(np?).
+ Error bound: |Jwy — @] — O(y/2)
e Current state of the art: Preconditioning based approaches [(Drineas)™ 07, (Rokhlin)™* 08 ].

1. Transform the data with randomized Hadamard (SRHT) or Fast Fourier Transform (FFT).
2. Uniformly subsample the resulting matrix (ns,ps = O(p)).
3. Estimate the OLS on this smaller matrix.

+ Running Time (FLOPS): O(max(nplog p, Msupsp?))-

+ Error bound: |jwg — | — 0(\/ P_).
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THE ALGORITHMS

e Either precondition the data matrix X and then subsample (fixed design) or directly subsample (sub-
gaussian random design) (If you believe the data is 1.1.d.).

1. Full Subsampling Algorithm (FS) Subsample X and Y, then w Fs=(XsubsTXsubs)_1XsubsTY3ubs-
+ Similar to [(Drineas)™ 07], but novel error analysis.
2. Covariance Subsampling Algorithm (CovS) — QDCOUS:(XsubSTXsubS)_1XTY.

3. Uluru — Two stage algorithm

(a) Stage 1: Use FS to estimate wrgs.

(b) Stage 2: Use CovS to estimate wWeorrect ON the remaining observations (n,.¢p = n\Nsubs)-

THEORY (SUMMARY)

e When n,,ps < nyem, keeping only the dominating terms, the results can be summarized as: With
failure probability less than some fixed number, the algorithms have the following error bounds.

1. FSHO(J\/ £).
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2. CovS — O(\/ L

Nsubs

wl| + o/ ).

3. Uluru — O(c—— +o0+/%).
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o If the second term for the error of the Uluru algorithm dominates, i.e. if r(= ==22=) > O(4/p/n)
then the error bound of Uluru ~ O(o+/£) (completely independent of r!).

e The threshold for r only depends on the properties of design matrix (n, p) and not on the noise
level o.

- FS and CovS do not have this property.

EXPERIMENTS

e Results for synthetic datasets (Plots 1-2, low signal and high signal) and for real world datasets (Plots
3-4, CPUSMALL, CADATA). Color scheme: [ (Green)-FS, | (Blue)-CovS, [ (Red)-Uluru. The
solid lines indicate no preconditioning (i.e. random design) and dashed lines indicate fixed design
with Randomized Hadamard preconditioning. The FLOPS reported are the theoretical values.
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(c) Perform Sampling Correction: Wy jyry = Wrs + Weorrect- CONCLUSION
Uluru Methods Running Time Error Uluru has a runtime of O(np) and obtains error bound of O(,/£) which is the same as full OLS and
O(FLOPS) bound is independent of amount of subsampling.
OLS O(n p?) O(\/p/n)
| FS O(nr p?) O(\/p/nr)
CovS O(nrp*+np) *
Uluru O(nrp?*+np) O(/p/n)

e We do not increase the error of Uluru by using less data in estimating the covariance matrix. So
our estimate of the quadratic term is as solid as the rock formation Uluru!




