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Abstract. The technology for building knowledge-based systems by inductive inference from examples has
been demonstrated successfully in several practical applications. This paper summarizes an approach to
synthesizing decision trees that has been used in a variety of systems, and it describes one such system,
ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal
with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is
discussed and two means of overcoming it are compared. The paper concludes with illustrations of current
research directions.

1. Introduction

Since artificial intelligence first achieved recognition as a discipline in the mid 1950's,
machine learning has been a central research area. Two reasons can be given for this
prominence. The ability to learn is a hallmark of intelligent behavior, so any attempt
to understand intelligence as a phenomenon must include an understanding of learn-
ing. More concretely, learning provides a potential methodology for building high-
performance systems.

Research on learning is made up of diverse subfields. At one extreme there are
adaptive systems that monitor their own performance and attempt to improve it by
adjusting internal parameters. This approach, characteristic of a large proportion of
the early learning work, produced self-improving programs for playing games
(Samuel, 1967), balancing poles (Michie, 1982), solving problems (Quinlan, 1969)
and many other domains. A quite different approach sees learning as the acquisition
of structured knowledge in the form of concepts (Hunt, 1962; Winston, 1975),
discrimination nets (Feigenbaum and Simon, 1963), or production rules (Buchanan,
1978).

The practical importance of machine learning of this latter kind has been underlin-
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ed by the advent of knowledge-based expert systems. As their name suggests, these
systems are powered by knowledge that is represented explicitly rather than being im-
plicit in algorithms. The knowledge needed to drive the pioneering expert systems was
codified through protracted interaction between a domain specialist and a knowledge
engineer. While the typical rate of knowledge elucidation by this method is a few
rules per man day, an expert system for a complex task may require hundreds or even
thousands of such rules. It is obvious that the interview approach to knowledge ac-
quisition cannot keep pace with the burgeoning demand for expert systems; Feigen-
baum (1981) terms this the 'bottleneck' problem. This perception has stimulated the
investigation of machine learning methods as a means of explicating knowledge
(Michie, 1983).

This paper focusses on one microcosm of machine learning and on a family of
learning systems that have been used to build knowledge-based systems of a simple
kind. Section 2 outlines the features of this family and introduces its members. All
these systems address the same task of inducing decision trees from examples. After
a more complete specification of this task, one system (ID3) is described in detail in
Section 4. Sections 5 and 6 present extensions to ID3 that enable it to cope with noisy
and incomplete information. A review of a central facet of the induction algorithm
reveals possible improvements that are set out in Section 7. The paper concludes with
two novel initiatives that give some idea of the directions in which the family may
grow.

2. The TDIDT family of learning systems

Carbonell, Michalski and Mitchell (1983) identify three principal dimensions along
which machine learning systems can be classified:

• the underlying learning strategies used;
• the representation of knowledge acquired by the system; and
• the application domain of the system.

This paper is concerned with a family of learning systems that have strong common
bonds in these dimensions.

Taking these features in reverse order, the application domain of these systems is
not limited to any particular area of intellectual activity such as Chemistry or Chess;
they can be applied to any such area. While they are thus general-purpose systems,
the applications that they address all involve classification. The product of learning
is a piece of procedural knowledge that can assign a hitherto-unseen object to one
of a specified number of disjoint classes. Examples of classification tasks are:
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1. the diagnosis of a medical condition from symptoms, in which the classes could
be either the various disease states or the possible therapies;

2. determining the game-theoretic value of a chess position, with the classes won for
white, lost for white, and drawn; and

3. deciding from atmospheric observations whether a severe thunderstorm is unlike-
ly, possible or probable.

It might appear that classification tasks are only a minuscule subset of procedural
tasks, but even activities such as robot planning can be recast as classification prob-
lems (Dechter and Michie, 1985).

The members of this family are sharply characterized by their representation of ac-
quired knowledge as decision trees. This is a relatively simple knowledge formalism
that lacks the expressive power of semantic networks or other first-order representa-
tions. As a consequence of this simplicity, the learning methodologies used in the
TDIDT family are considerably less complex than those employed in systems that can
express the results of their learning in a more powerful language. Nevertheless, it is
still possible to generate knowledge in the form of decision trees that is capable of
solving difficult problems of practical significance.

The underlying strategy is non-incremental learning from examples. The systems
are presented with a set of cases relevant to a classification task and develop a deci-
sion tree from the top down, guided by frequency information in the examples but
not by the particular order in which the examples are given. This contrasts with in-
cremental methods such as that employed in MARVIN (Sammut, 1985), in which a
dialog is carried on with an instructor to 'debug' partially correct concepts, and that
used by Winston (1975), in which examples are analyzed one at a time, each produc-
ing a small change in the developing concept; in both of these systems, the order in
which examples are presented is most important. The systems described here search
for patterns in the given examples and so must be able to examine and re-examine
all of them at many stages during learning. Other well-known programs that share
this data-driven approach include BACON (Langley, Bradshaw and Simon, 1983)
and INDUCE (Michalski, 1980).

In summary, then, the systems described here develop decision trees for classifica-
tion tasks. These trees are constructed beginning with the root of the tree and pro-
ceeding down to its leaves. The family's palindromic name emphasizes that its
members carry out the Top-Down Induction of Decision Trees.

The example objects from which a classification rule is developed are known only
through their values of a set of properties or attributes, and the decision trees in turn
are expressed in terms of these same attributes. The examples themselves can be
assembled in two ways. They might come from an existing database that forms a
history of observations, such as patient records in some area of medicine that have
accumulated at a diagnosis center. Objects of this kind give a reliable statistical pic-
ture but, since they are not organized in any way, they may be redundant or omit
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Figure 1, The TDIDT family tree.

uncommon cases that have not been encountered during the period of record-
keeping. On the other hand, the objects might be a carefully culled set of tutorial ex-
amples prepared by a domain expert, each with some particular relevance to a com-
plete and correct classification rule. The expert might take pains to avoid redundancy
and to include examples of rare cases. While the family of systems will deal with col-
lections of either kind in a satisfactory way, it should be mentioned that earlier
TDIDT systems were designed with the 'historical record' approach in mind, but all
systems described here are now often used with tutorial sets (Michie, 1985).

Figure 1 shows a family tree of the TDIDT systems. The patriarch of this family
is Hunt's Concept Learning System framework (Hunt, Marin and Stone, 1966). CLS
constructs a decision tree that attempts to minimize the cost of classifying an object.
This cost has components of two types: the measurement cost of determining the
value of property A exhibited by the object, and the misclassification cost of deciding
that the object belongs to class J when its real class is K. CLS uses a lookahead
strategy similar to minimax. At each stage, CLS explores the space of possible deci-
sion trees to a fixed depth, chooses an action to minimize cost in this limited space,
then moves one level down in the tree. Depending on the depth of lookahead chosen,
CLS can require a substantial amount of computation, but has been able to unearth
subtle patterns in the objects shown to it.

ID3 (Quinlan, 1979, 1983a) is one of a series of programs developed from CLS in
response to a challenging induction task posed by Donald Michie, viz. to decide from
pattern-based features alone whether a particular chess position in the King-Rook vs
King-Knight endgame is lost for the Knight's side in a fixed number of ply. A full
description of ID3 appears in Section 4, so it is sufficient to note here that it embeds
a tree-building method in an iterative outer shell, and abandons the cost-driven
lookahead of CLS with an information-driven evaluation function.

ACLS (Paterson and Niblett, 1983) is a generalization of ID3. CLS and ID3 both
require that each property used to describe objects has only values from a specified
set. In addition to properties of this type, ACLS permits properties that have



INDUCTION OF DECISION TREES 85

unrestricted integer values. The capacity to deal with attributes of this kind has allow-
ed ACLS to be applied to difficult tasks such as image recognition (Shepherd, 1983).

ASSISTANT (Kononenko, Bratko and Roskar, 1984) also acknowledges ID3 as
its direct ancestor. It differs from ID3 in many ways, some of which are discussed
in detail in later sections. ASSISTANT further generalizes on the integer-valued at-
tributes of ACLS by permitting attributes with continuous (real) values. Rather than
insisting that the classes be disjoint, ASSISTANT allows them to form a hierarchy,
so that one class may be a finer division of another. ASSISTANT does not form a
decision tree iteratively in the manner of ID3, but does include algorithms for choos-
ing a 'good' training set from the objects available. ASSISTANT has been used in
several medical domains with promising results.

The bottom-most three systems in the figure are commercial derivatives of ACLS.
While they do not significantly advance the underlying theory, they incorporate
many user-friendly innovations and utilities that expedite the task of generating and
using decision trees. They all have industrial successes to their credit. Westinghouse
Electric's Water Reactor Division, for example, points to a fuel-enrichment applica-
tion in which the company was able to boost revenue by 'more than ten million
dollars per annum' through the use of one of them.1

3. The induction task

We now give a more precise statement of the induction task. The basis is a universe
of objects that are described in terms of a collection of attributes. Each attribute
measures some important feature of an object and will be limited here to taking a
(usually small) set of discrete, mutually exclusive values. For example, if the objects
were Saturday mornings and the classification task involved the weather, attributes
might be

outlook, with values {sunny, overcast, rain}
temperature, with values {cool, mild, hot}
humidity, with values {high, normal}
windy, with values {true, false }

Taken together, the attributes provide a zeroth-order language for characterizing ob-
jects in the universe. A particular Saturday morning might be described as

outlook: overcast
temperature: cool
humidity: normal
windy: false

1 Letter cited in the journal Expert Systems (January, 1985), p. 20.
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Each object in the universe belongs to one of a set of mutually exclusive classes,
To simplify the following treatment, we will assume that there are only two such
classes denoted P and N, although the extension to any number of classes is not dif-
ficult. In two-class induction tasks, objects of class P and N are sometimes referred
to as positive instances and negative instances, respectively, of the concept being
learned.

The other major ingredient is a training set of objects whose class is known. The
induction task is to develop a classification rule that can determine the class of any
object from its values of the attributes. The immediate question is whether or not the
attributes provide sufficient information to do this. In particular, if the training set
contains two objects that have identical values for each attribute and yet belong to
different classes, it is clearly impossible to differentiate between these objects with
reference only to the given attributes. In such a case attributes will be termed inade-
quate for the training set and hence for the induction task.

As mentioned above, a classification rule will be expressed as a decision tree. Table
1 shows a small training set that uses the 'Saturday morning' attributes. Each object's
value of each attribute is shown, together with the class of the object (here, class P
mornings are suitable for some unspecified activity). A decision tree that correctly
classifies each object in the training set is given in Figure 2. Leaves of a decision tree
are class names, other nodes represent attribute-based tests with a branch for each
possible outcome. In order to classify an object, we start at the root of the tree,
evaluate the test, and take the branch appropriate to the outcome. The process con-
tinues until a leaf is encountered, at which time the object is asserted to belong to

Table 1 . A small training set

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Outlook

sunny
sunny
overcast
rain
rain
rain
overcast
sunny
sunny
rain
sunny
overcast
overcast
rain

Attributes

Temperature

hot
hot
hot
mild
cool
cool
cool
mild
cool
mild
mild
mild
hot
mild

Humidity

high
high
high
high
normal
normal
normal
high
normal
normal
normal
high
normal
high

Windy

false
true
false
false
false
true
true
false
false
false
true
true
false
true

Class

N
N
P
P
P
N
P
N
P
P
P
P
P
N
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Figure 2. A simple decision tree

the class named by the leaf. Taking the decision tree of Figure 2, this process con-
cludes that the object which appeared as an example at the start of this section, and
which is not a member of the training set, should belong to class P. Notice that only
a subset of the attributes may be encountered on a particular path from the root of
the decision tree to a leaf; in this case, only the outlook attribute is tested before
determining the class.

If the attributes are adequate, it is always possible to construct a decision tree that
correctly classifies each object in the training set, and usually there are many such
correct decision trees. The essence of induction is to move beyond the training set,
i.e. to construct a decision tree that correctly classifies not only objects from the
training set but other (unseen) objects as well. In order to do this, the decision tree
must capture some meaningful relationship between an object's class and its values
of the attributes. Given a choice between two decision trees, each of which is correct
over the training set, it seems sensible to prefer the simpler one on the grounds that
it is more likely to capture structure inherent in the problem. The simpler tree would
therefore be expected to classify correctly more objects outside the training set. The
decision tree of Figure 3, for instance, is also correct for the training set of Table 1,
but its greater complexity makes it suspect as an 'explanation' of the training set.2

4. ID3

One approach to the induction task above would be to generate all possible decision
trees that correctly classify the training set and to select the simplest of them. The

2 The preference for simpler trees, presented here as a commonsense application of Occam's Razor, is
also supported by analysis. Pearl (1978b) and Quinlan (1983a) have derived upper bounds on the expected
error using different formalisms for generalizing from a set of known cases. For a training set of predeter-
mined size, these bounds increase with the complexity of the induced generalization.
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Figure 3. A complex decision tree.

number of such trees is finite but very large, so this approach would only be feasible
for small induction tasks. ID3 was designed for the other end of the spectrum, where
there are many attributes and the training set contains many objects, but where a
reasonably good decision tree is required without much computation. It has generally
been found to construct simple decision trees, but the approach it uses cannot
guarantee that better trees have not been overlooked.

The basic structure of ID3 is iterative. A subset of the training set called the win-
dow is chosen at random and a decision tree formed from it; this tree correctly
classifies all objects in the window. All other objects in the training set are then
classified using the tree. If the tree gives the correct answer for all these objects then
it is correct for the entire training set and the process terminates. If not, a selection
of the incorrectly classified objects is added to the window and the process continues.
In this way, correct decision trees have been found after only a few iterations for
training sets of up to thirty thousand objects described in terms of up to 50 attributes.
Empirical evidence suggests that a correct decision tree is usually found more quickly
by this iterative method than by forming a tree directly from the entire training set.
However, O'Keefe (1983) has noted that the iterative framework cannot be
guaranteed to converge on a final tree unless the window can grow to include the en-
tire training set. This potential limitation has not yet arisen in practice.

The crux of the problem is how to form a decision tree for an arbitrary collection
C of objects. If C is empty or contains only objects of one class, the simplest decision
tree is just a leaf labelled with the class. Otherwise, let T be any test on an object with
possible outcomes O1, O2, ... Ow. Each object in C will give one of these outcomes
for T, so T produces a partition {C1, C2, ... Cw } of C with Ci containing those ob-
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Figure 4. A tree structuring of the objects in C.

jects having outcome Oi. This is represented graphically by the tree form of Figure
4. If each subset Ci in this figure could be replaced by a decision tree for Ci, the result
would be a decision tree for all of C. Moreover, so long as two or more Ci's are non-
empty, each Ci is smaller than C. In the worst case, this divide-and-conquer strategy
will yield single-object subsets that satisfy the one-class requirement for a leaf. Thus,
provided that a test can always be found that gives a non-trivial partition of any set
of objects, this procedure will always produce a decision tree that correctly classifies
each object in C.

The choice of test is crucial if the decision tree is to be simple. For the moment,
a test will be restricted to branching on the values of an attribute, so choosing a test
comes down to selecting an attribute for the root of the tree. The first induction pro-
grams in the ID series used a seat-of-the-pants evaluation function that worked
reasonably well. Following a suggestion of Peter Gacs, ID3 adopted an information-
based method that depends on two assumptions. Let C contain p objects of class P
and n of class N. The assumptions are:

(1) Any correct decision tree for C will classify objects in the same proportion as
their representation in C. An arbitrary object will be determined to belong to
class P with probability p/(p + n) and to class N with probability n/(p + n).

(2) When a decision tree is used to classify an object, it returns a class. A decision
tree can thus be regarded as a source of a message 'P' or 'N', with the expected
information needed to generate this message given by

If attribute A with values {A1, A2, ... Av) is used for the root of the decision tree,
it will partition C into (C1, C2, ... CV} where Ci contains those objects in C that
have value Ai of A. Let Ci contain pi objects of class P and ni of class N. The expected
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information required for the subtree for Ci is I(pi, ni). The expected information re-
quired for the tree with A as root is then obtained as the weighted average

where the weight for the ith branch is the proportion of the objects in C that belong
to Ci. The information gained by branching on A is therefore

A good rule of thumb would seem to be to choose that attribute to branch on which
gains the most information.3 ID3 examines all candidate attributes and chooses A to
maximize gain(A), forms the tree as above, and then uses the same process recursively
to form decision trees for the residual subsets C1, C2, ... Cv.

To illustrate the idea, let C be the set of objects in Table 1. Of the 14 objects, 9
are of class P and 5 are of class N, so the information required for classification is

Now consider the outlook attribute with values {sunny, overcast, rain}. Five of the
14 objects in C have the first value (sunny), two of them from class P and three from
class N, so

and similarly

The expected information requirement after testing this attribute is therefore

3 Since I(p,n) is constant for all attributes, maximizing the gain is equivalent to minimizing E(A), which
is the mutual information of the attribute A and the class. Pearl (1978a) contains an excellent account of
the rationale of information-based heuristics.
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The gain of this attribute is then

gain(outlook) = 0.940 - E(outlook) = 0.246 bits

Similar analysis gives

gain(temperature) = 0.029 bits
gain(humidity) = 0.151 bits

gain(windy) = 0.048 bits

so the tree-forming method used in ID3 would choose outlook as the attribute for
the root of the decision tree. The objects would then be divided into subsets according
to their values of the outlook attribute and a decision tree for each subset would be
induced in a similar fashion. In fact, Figure 2 shows the actual decision tree generated
by ID3 from this training set.

A special case arises if C contains no objects with some particular value Aj of A,
giving an empty Cj. ID3 labels such a leaf as 'null' so that it fails to classify any object
arriving at that leaf. A better solution would generalize from the set C from which
Cj came, and assign this leaf the more frequent class in C.

The worth of ID3's attribute-selecting heuristic can be assessed by the simplicity
of the resulting decision trees, or, more to the point, by how well those trees express
real relationships between class and attributes as demonstrated by the accuracy with
which they classify objects other than those in the training set (their predictive ac-
curacy). A straightforward method of assessing this predictive accuracy is to use only
part of the given set of objects as a training set, and to check the resulting decision
tree on the remainder.

Several experiments of this kind have been carried out. In one domain, 1.4 million
chess positions described in terms of 49 binary-valued attributes gave rise to 715
distinct objects divided 65%:35% between the classes. This domain is relatively com-
plex since a correct decision tree for all 715 objects contains about 150 nodes. When
training sets containing 20% of these 715 objects were chosen at random, they pro-
duced decision trees that correctly classified over 84% of the unseen objects. In
another version of the same domain, 39 attributes gave 551 distinct objects with a
correct decision tree of similar size; training sets of 20% of these 551 objects gave
decision trees of almost identical accuracy. In a simpler domain (1,987 objects with
a correct decision tree of 48 nodes), randomly-selected training sets containing 20%
of the objects gave decision trees that correctly classified 98% of the unseen objects.
In all three cases, it is clear that the decision trees reflect useful (as opposed to ran-
dom) relationships present in the data.

This discussion of ID3 is rounded off by looking at the computational require-
ments of the procedure. At each non-leaf node of the decision tree, the gain of each
untested attribute A must be determined. This gain in turn depends on the values pi
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and ni for each value Ai of A, so every object in C must be examined to determine
its class and its value of A. Consequently, the computational complexity of the pro-
cedure at each such node is O ( I C I - I A I ) , where IAI is the number of attributes
above. ID3's total computational requirement per iteration is thus proportional to
the product of the size of the training set, the number of attributes and the number
of non-leaf nodes in the decision tree. The same relationship appears to extend to the
entire induction process, even when several iterations are performed. No exponential
growth in time or space has been observed as the dimensions of the induction task
increase, so the technique can be applied to large tasks.

5. Noise

So far, the information supplied in the training set has been assumed to be entirely
accurate. Sadly, induction tasks based on real-world data are unlikely to find this
assumption to be tenable. The description of objects may include attributes based on
measurements or subjective judgements, both of which may give rise to errors in the
values of attributes. Some of the objects in the training set may even have been
misclassified. To illustrate the idea, consider the task of developing a classification
rule for medical diagnosis from a collection of patient histories. An attribute might
test for the presence of some substance in the blood and will almost inevitably give
false positive or negative readings some of the time. Another attribute might assess
the patient's build as slight, medium, or heavy, and different assessors may apply dif-
ferent criteria. Finally, the collection of case histories will probably include some pa-
tients for whom an incorrect diagnosis was made, with consequent errors in the class
information provided in the training set.

What problems might errors of these kinds pose for the tree-building procedure
described earlier? Consider again the small training set in Table 1, and suppose now
that attribute outlook of object 1 is incorrectly recorded as overcast. Objects 1 and
3 will then have identical descriptions but belong to different classes, so the attributes
become inadequate for this training set. The attributes will also become inadequate
if attribute windy of object 4 is corrupted to true, because that object will then con-
flict with object 14. Finally, the initial training set can be accounted for by the simple
decision tree of Figure 2 containing 8 nodes. Suppose that the class of object 3 were
corrupted to N. A correct decision tree for this corrupted training set would now have
to explain the apparent special case of object 3. The smallest such tree contains twelve
nodes, half again as complex as the 'real' tree. These illustrations highlight two prob-
lems: errors in the training set may cause the attributes to become inadequate, or may
lead to decision trees of spurious complexity.

Non-systematic errors of this kind in either the values of attributes or class infor-
mation are usually referred to as noise. Two modifications are required if the tree-
building algorithm is to be able to operate with a noise-affected training set.
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(1) The algorithm must be able to work with inadequate attributes, because noise can
cause even the most comprehensive set of attributes to appear inadequate.

(2) The algorithm must be able to decide that testing further attributes will not im-
prove the predictive accuracy of the decision tree. In the last example above, it
should refrain from increasing the complexity of the decision tree to accom-
modate a single noise-generated special case.

We start with the second requirement of deciding when an attribute is really rele-
vant to classification. Let C be a collection of objects containing representatives of
both classes, and let A be an attribute with random values that produces subsets {C1,
C2, ... Cv }. Unless the proportion of class P objects in each of the Ci is exactly the
same as the proportion of class P objects in C itself, branching on attribute A will
give an apparent information gain. It will therefore appear that testing attribute A
is a sensible step, even though the values of A are random and so cannot help to
classify the objects in C.

One solution to this dilemma might be to require that the information gain of any
tested attribute exceeds some absolute or percentage threshold. Experiments with this
approach suggest that a threshold large enough to screen out irrelevant attributes also
excludes attributes that are relevant, and the performance of the tree-building pro-
cedure is degraded in the noise-free case.

An alternative method based on the chi-square test for stochastic independence has
been found to be more useful. In the previous notation, suppose attribute A produces
subsets {C1, C2, ... Cv} of C, where Ci contains pi and ni objects of class P and N,
respectively. If the value of A is irrelevant to the class of an object in C, the expected
value p' i of pi should be

If n'i is the corresponding expected value of ni, the statistic

is approximately chi-square with v-1 degrees of freedom. Provided that none of the
values p'i or n' i are very small, this statistic can be used to determine the confidence
with which one can reject the hypothesis that A is independent of the class of objects
in C (Hogg and Craig, 1970). The tree-building procedure can then be modified to
prevent testing any attribute whose irrelevance cannot be rejected with a very high
(e.g. 99%) confidence level. This has been found effective in preventing over-
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complex trees that attempt to 'fit the noise' without affecting performance of the pro-
cedure in the noise-free case.4

Turning now to the first requirement, we see that the following situation can arise:
a collection of C objects may contain representatives of both classes, yet further
testing of C may be ruled out, either because the attributes are inadequate and unable
to distinguish among the objects in C, or because each attribute has been judged to
be irrelevant to the class of objects in C. In this situation it is necessary to produce
a leaf labelled with class information, but the objects in C are not all of the same
class.

Two possibilities suggest themselves. The notion of class could be generalized to
allow the value p/(p + n) in the interval (0,1), a class of 0.8 (say) being interpreted
as 'belonging to class P with probability 0.8'. An alternative approach would be to
opt for the more numerous class, i.e. to assign the leaf to class P if p > n, to class
N if p < n, and to either if p = n. The first approach minimizes the sum of the
squares of the error over objects in C, while the second minimizes the sum of the ab-
solute errors over objects in C. If the aim is to minimize expected error, the second
approach might be anticipated to be superior, and indeed this has been found to be
the case.

Several studies have been carried out to see how this modified procedure holds up
under varying levels of noise (Quinlan 1983b, 1985a). One such study is outlined here,
based on the earlier-mentioned task with 551 objects and 39 binary-valued attributes.
In each experiment, the whole set of objects was artificially corrupted as described
below and used as a training set to produce a decision tree. Each object was then cor-
rupted anew, classified by this tree and the error rate determined. This process was
repeated twenty times to give more reliable averages.

In this study, values were corrupted as follows. A noise level of n percent applied
to a value meant that, with probability n percent, the true value was replaced by a
value chosen at random from among the values that could have appeared.5 Table 2
shows the results when noise levels varying from 5% to 100% were applied to the
values of the most noise-sensitive attribute, to the values of all attributes
simultaneously, and to the class information. This table demonstrates the quite dif-
ferent forms of degradation observed. Destroying class information produces a
linear increase in error so that, when all class information is noise, the resulting deci-
sion tree classifies objects entirely randomly. Noise in a single attribute does not have
a dramatic effect. Noise in all attributes together, however, leads to a relatively rapid
increase in error which reaches a peak and declines. The peak is somewhat inter-

4 ASSISTANT uses an information-based measure to perform much the same function, but no com-
parative results are available to date.

5 It might seem that the value should be replaced by an incorrect value. Consider, however, the case
of a two-valued attribute corrupted with 100% noise. If the value of each object were replaced by the (on-
ly) incorrect value, the initial attribute will have been merely inverted with no loss of information.
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Table 2. Error rates produced by noise in a single attribute, all attributes, and class information

Noise
level

5%
10%
15%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Single
attribute

1.3%
2.5%
3.3%
4.6%
6.1%
7.6%
8.8%
9.4%
9.9%

10.4%
10.8%
10.8%

All
attributes

11.9%
18.9%
24.6%
27.8%
29.5%
30.3%
29.2%
27.5%
25.9%
26.0%
25.6%
25.9%

Class
information

2.6%
5.5%
8.3%
9.9%

14.8%
18.1%
21.8%
26.4%
27.2%
29.5%
34.1%
49.6%

esting, and can be explained as follows. Let C be a collection of objects containing
p from class P and n from class N, respectively. At noise levels around 50%, the
algorithm for constructing decision trees may still find relevant attributes to branch
on, even though the performance of this tree on unseen but equally noisy objects will
be essentially random. Suppose the tree for C classifies objects as class P with pro-
bability p/(n + p). The expected error if objects with a similar class distribution to
those in C were classified by this tree is given by

At very high levels of noise, however, the algorithm will find all attributes irrelevant
and classify everything as the more frequent class; assume without loss of generality
that this class is P. The expected error in this case is

which is less than the above expression since we have assumed that p is greater than
n. The decline in error is thus a consequence of the chi-square cutoff coming into play
as noise becomes more intense.

The table brings out the point that low levels of noise do not cause the tree-building
machinery to fall over a cliff. For this task, a 5% noise level in a single attribute pro-
duces a degradation in performance of less than 2%; a 5% noise level in all attributes
together produces a 12% degradation in classification performance; while a similar
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noise level in class information results in a 3% degradation. Comparable figures have
been obtained for other induction tasks.

One interesting point emerged from other experiments in which a correct decision
tree formed from an uncorrupted training set was used to classify objects whose
descriptions were corrupted. This scenario corresponds to forming a classification
rule under controlled and sanitized laboratory conditions, then using it to classify ob-
jects in the field. For higher noise levels, the performance of the correct decision tree
on corrupted data was found to be inferior to that of an imperfect decision tree form-
ed from data corrupted to a similar level! (This phenomenon has an explanation
similar to that given above for the peak in Table 2.) The moral seems to be that it
is counter-productive to eliminate noise from the attribute information in the train-
ing set if these same attributes will be subject to high noise levels when the induced
decision tree is put to use.

6. Unknown attribute values

The previous section examined modifications to the tree-building process that en-
abled it to deal with noisy or corrupted values. This section is concerned with an allied
problem that also arises in practice: unknown attribute values. To continue the
previous medical diagnosis example, what should be done when the patient case
histories that are to form the training set are incomplete?

One way around the problem attempts to fill in an unknown value by utilizing in-
formation provided by context. Using the previous notation, let us suppose that a
collection C of objects contains one whose value of attribute A is unknown. ASSIS-
TANT (Kononenko et al, 1984) uses a Bayesian formalism to determine the prob-
ability that the object has value Ai of A by examining the distribution of values of
A in C as a function of their class. Suppose that the object in question belongs to
class P. The probability that the object has value Ai for attribute A can be expressed
as

where the calculation of pi and p is restricted to those members of C whose value of
A is known. Having determined the probability distribution of the unknown value
over the possible values of A, this method could either choose the most likely value
or divide the object into fractional objects, each with one possible value of A,
weighted according to the probabilities above.

Alen Shapiro (private communication) has suggested using a decision-tree ap-
proach to determine the unknown values of an attribute. Let C' be the subset of C
consisting of those objects whose value of attribute A is defined. In C', the original
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Table 3. Proportion of times that an unknown attribute value is replaced by an incorrect value

Replacement
method

Bayesian
Decision tree
Most common value

1

28%
19%
28%

Attribute

2

27%
22%
27%

3

38%
19%
40%

class (P or N) is regarded as another attribute while the value of attribute A becomes
the 'class' to be determined. That is, C' is used to construct a decision tree for deter-
mining the value of attribute A from the other attributes and the class. When con-
structed, this decision tree can be used to 'classify' each object in C - C' and the
result assigned as the unknown value of A.

Although these methods for determining unknown attribute values look good on
paper, they give unconvincing results even when only a single value of one attribute
is unknown; as might be expected, their performance is much worse when several
values of several attributes are unknown. Consider again the 551-object 39-attribute
task. We may ask how well the methods perform when asked to fill in a single
unknown attribute value. Table 3 shows, for each of the three most important at-
tributes, the proportion of times each method fails to replace an unknown value by
its correct value. For comparison, the table also shows the same figure for the simple
strategy: always replace an unknown value of an attribute with its most common
value. The Bayesian method gives results that are scarcely better than those given by
the simple strategy and, while the decision-tree method uses more context and is
thereby more accurate, it still gives disappointing results.

Rather than trying to guess unknown attribute values, we could treat 'unknown'
as a new possible value for each attribute and deal with it in the same way as other
values. This can lead to an anomalous situation, as shown by the following example.
Suppose A is an attribute with values {A1, A2} and let C be a collection of objects
such that

giving a value of 1 bit for E(A). Now let A' be an identical attribute except that one
of the objects with value A1 of A has an unknown value of A'. A' has the values
(A'1 , A'2, A ' 3 = unknown), so the corresponding values might be
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resulting in a value of 0.84 bits for E(A'). In terms of the selection criterion
developed earlier, A' now seems to give a higher information gain than A. Thus, hav-
ing unknown values may apparently increase the desirability of an attribute, a result
entirely opposed to common sense. The conclusion is that treating 'unknown' as a
separate value is not a solution to the problem.

One strategy which has been found to work well is as follows. Let A be an attribute
with values {A1, A2, ... Av}. For some collection C of objects, let the numbers of
objects with value Ai of A be pi and ni, and let pu and nu denote the numbers of ob-
jects of class P and N respectively that have unknown values of A. When the informa-
tion gain of attribute A is assessed, these objects with unknown values are distributed
across the values of A in proportion to the relative frequency of these values in C.
Thus the gain is assessed as if the true value of pi were given by

where

and similarly for ni. (This expression has the property that unknown values can only
decrease the information gain of an attribute.) When an attribute has been chosen
by the selection criterion, objects with unknown values of that attribute are discarded
before forming decision trees for the subsets { C i } .

The other half of the story is how unknown attribute values are dealt with during
classification. Suppose that an object is being classified using a decision tree that
wishes to branch on attribute A, but the object's value of attribute A is unknown.
The correct procedure would take the branch corresponding to the real value Ai but,
since this value is unknown, the only alternative is to explore all branches without
forgetting that some are more probable than others.

Conceptually, suppose that, along with the object to be classified, we have been
passed a token with some value T. In the situation above, each branch of Ai is then
explored in turn, using a token of value

T • ratioi

i.e. the given token value is distributed across all possible values in proportion to the
ratios above. The value passed to a branch may be distributed further by subsequent
tests on other attributes for which this object has unknown values. Instead of a single
path to a leaf, there may now be many, each qualified by its token value. These token
values at the leaves are summed for each class, the result of the classification being
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Figure 5. Error produced by unknown attribute values.

that class with the higher value. The distribution of values over the possible classes
might also be used to compute a confidence level for the classification.

Straightforward though it may be, this procedure has been found to give a very
graceful degradation as the incidence of unknown values increases. Figure 5 sum-
marizes the results of an experiment on the now-familiar task with 551 objects and
39 attributes. Various 'ignorance levels' analogous to the earlier noise levels were ex-
plored, with twenty repititions at each level. For each run at an ignorance level of
m percent, a copy of the 551 objects was made, replacing each value of every attribute
by 'unknown' with m percent probability. A decision tree for these (incomplete)
objects was formed as above, and then used to classify a new copy of each object
corrupted in the same way. The figure shows that the degradation of performance
with ignorance level is gradual. In practice, of course, an ignorance level even as high
as 10% is unlikely - this would correspond to an average of one value in every ten
of the object's description being unknown. Even so, the decision tree produced from
such a patchy training set correctly classifies nearly ninety percent of objects that also
have unknown values. A much lower level of degradation is observed when an object
with unknown values is classified using a correct decision tree.

This treatment has assumed that no information whatsoever is available regarding
an unknown attribute. Catlett (1985) has taken this approach a stage further by
allowing partial knowledge of an attribute value to be stated in Shafer notation
(Garvey, Lowrance and Fischler, 1981). This notation permits probabilistic asser-
tions to be made about any subset or subsets of the possible values of an attribute
that an object might have.
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7. The selection criterion

Attention has recently been refocussed on the evaluation function for selecting the
best attribute-based test to form the root of a decision tree. Recall that the criterion
described earlier chooses the attribute that gains most information. In the course of
their experiments, Bratko's group encountered a medical induction problem in which
the attribute selected by the gain criterion ('age of patient', with nine value ranges)
was judged by specialists to be less relevant than other attributes. This situation was
also noted on other tasks, prompting Kononenko et al (1984) to suggest that the gain
criterion tends to favor attributes with many values.

Analysis supports this finding. Let A be an attribute with values A1, A2, ... Av

and let A' be an attribute formed from A by splitting one of the values into two. If
the values of A were sufficiently fine for the induction task at hand, we would not
expect this refinement to increase the usefulness of A. Rather, it might be anticipated
that excessive fineness would tend to obscure structure in the training set so that A'
was in fact less useful than A. However, it can be proved that gain(A') is greater than
or equal to gain(A), being equal to it only when the proportions of the classes are
the same for both subdivisions of the original value. In general, then, gain(A') will
exceed gain(A) with the result that the evaluation function of Section 4 will prefer
A' to A. By analogy, attributes with more values will tend to be preferred to at-
tributes with fewer.

As another way of looking at the problem, let A be an attribute with random values
and suppose that the set of possible values of A is large enough to make it unlikely
that two objects in the training set have the same value for A. Such an attribute would
have maximum information gain, so the gain criterion would select it as the root of
the decision tree. This would be a singularly poor choice since the value of A, being
random, contains no information pertinent to the class of objects in the training set.

ASSISTANT (Kononenko et al, 1984) solves this problem by requiring that all tests
have only two outcomes. If we have an attribute A as before with v values A1, A2,
... Av, the decision tree no longer has a branch for each possible value. Instead, a
subset S of the values is chosen and the tree has two branches, one for all values in
the set and one for the remainder. The information gain is then computed as if all
values in S were amalgamated into one single attribute value and all remaining values
into another. Using this selection criterion (the subset criterion), the test chosen for
the root of the decision tree uses the attribute and subset of its values that maximizes
the information gain. Kononenko et al report that this modification led to smaller
decision trees with an improved classification performance. However, the trees were
judged to be less intelligible to human beings, in agreement with a similar finding of
Shepherd (1983).

Limiting decision trees to a binary format harks back to CLS, in which each test
was of the form 'attribute A has value Ai', with two branches corresponding to true
and false. This is clearly a special case of the test implemented in ASSISTANT, which
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permits a set of values, rather than a single value, to be distinguished from the others.
It is also worth noting that the method of dealing with attributes having continuous

values follows the same binary approach. Let A be such an attribute and suppose that
the distinct values of A that occur in C are sorted to give the sequence V1, V2, . . . .
Vk. Each pair of values Vi, Vi+ 1 suggests a possible threshold

that divides the objects of C into two subsets, those with a value of A above and
below the threshold respectively. The information gain of this division can then be
investigated as above.

If all tests must be binary, there can be no bias in favor of attributes with large
numbers of values. It could be argued, however, that ASSISTANT'S remedy has
undesirable side-effects that have to be taken into account. First, it can lead to deci-
sion trees that are even more unintelligible to human experts than is ordinarily the
case, with unrelated attribute values being grouped together and with multiple tests
on the same attribute.

More importantly, the subset criterion can require a large increase in computation.
An attribute A with v values has 2V value subsets and, when trivial and symmetric
subsets are removed, there are still 2 V - 1 -1 different ways of specifying the
distinguished subset of attribute values. The information gain realized with each of
these must be investigated, so a single attribute with v values has a computational
requirement similar to 2V - 1 -1 binary attributes. This is not of particular conse-
quence if v is small, but the approach would appear infeasible for an attribute with
20 values.

Another method of overcoming the bias is as follows. Consider again our training
set containing p and n objects of class P and N respectively. As before, let attribute
A have values A1, A2, ... Av and let the numbers of objects with value Ai of attribute
A be pi and ni respectively. Enquiring about the value of attribute A itself gives rise
to information, which can be expressed as

IV(A) thus measures the information content of the answer to the question, 'What
is the value of attribute A?' As discussed earlier, gain(A) measures the reduction in
the information requirement for a classification rule if the decision tree uses attribute
A as a root. Ideally, as much as possible of the information provided by determining
the value of an attribute should be useful for classification purposes or, equivalently,
as little as possible should be 'wasted'. A good choice of attribute would then be one
for which the ratio
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gain(A) / IV(A)

is as large as possible. This ratio, however, may not always be defined - IV(A) may
be zero - or it may tend to favor attributes for which IV(A) is very small. The gain
ratio criterion selects, from among those attributes with an average-or-better gain,
the attribute that maximizes the above ratio.

This can be illustrated by returning to the example based on the training set of
Table 1. The information gain of the four attributes is given in Section 4 as

gain(outlook) = 0.246 bits
gain(temperature) = 0.029 bits

gain(humidity) = 0.151 bits
gain(windy) = 0.048 bits

Of these, only outlook and humidity have above-average gain. For the outlook at-
tribute, five objects in the training set have the value sunny, four have overcast and
five have rain. The information obtained by determining the value of the outlook at-
tribute is therefore

Similarly,

So,

The gain ratio criterion would therefore still select the outlook attribute for the root
of the decision tree, although its superiority over the humidity attribute is now much
reduced.

The various selection criteria have been compared empirically in a series of ex-
periments (Quinlan, 1985b). When all attributes are binary, the gain ratio criterion
has been found to give considerably smaller decision trees: for the 551-object task,
it produces a tree of 143 nodes compared to the smallest previously-known tree of
175 nodes. When the task includes attributes with large numbers of values, the subset
criterion gives smaller decision trees that also have better predictive performance, but
can require much more computation. However, when these many-valued attributes
are augmented by redundant attributes which contain the same information at a



INDUCTION OF DECISION TREES 103

lower level of detail, the gain ratio criterion gives decision trees with the greatest
predictive accuracy. All in all, these experiments suggest that the gain ratio criterion
does pick a good attribute for the root of the tree. Testing an attribute with many
values, however, will fragment the training set C into very small subsets {Ci} and
the decision trees for these subsets may then have poor predictive accuracy. In such
cases, some mechanism such as value subsets or redundant attributes is needed to pre-
vent excessive fragmentation.

The three criteria discussed here are all information-based, but there is no reason
to suspect that this is the only possible basis for such criteria. Recall that the
modifications to deal with noise barred an attribute from being used in the decision
tree unless it could be shown to be relevant to the class of objects in the training set.
For any attribute A, the value of the statistic presented in Section 5, together with
the number v of possible values of A, determines the confidence with which we can
reject the null hypothesis that an object's value of A is irrelevant to its class. Hart
(1985) has proposed that this same test could function directly as a selection criterion:
simply pick the attribute for which this confidence level is highest. This measure takes
explicit account of the number of values of an attribute and so may not exhibit bias.
Hart notes, however, that the chi-square test is valid only when the expected values
of p' i and n' i are uniformly larger than four. This condition could be violated by
a set C of objects either when C is small or when few objects in C have a particular
value of some attribute, and it is not clear how such sets would be handled. No em-
pirical results with this approach are yet available.

8. Conclusion

The aim of this paper has been to demonstrate that the technology for building deci-
sion trees from examples is fairly robust. Current commercial systems are powerful
tools that have achieved noteworthy successes. The groundwork has been done for
advances that will permit such tools to deal even with noisy, incomplete data typical
of advanced real-world applications. Work is continuing at several centers to im-
prove the performance of the underlying algorithms.

Two examples of contemporary research give some pointers to the directions in
which the field is moving. While decision trees generated by the above systems are
fast to execute and can be very accurate, they leave much to be desired as representa-
tions of knowledge. Experts who are shown such trees for classification tasks in their
own domain often can identify little familiar material. It is this lack of familiarity
(and perhaps an underlying lack of modularity) that is the chief obstacle to the use
of induction for building large expert systems. Recent work by Shapiro (1983) offers
a possible solution to this problem. In his approach, called Structured Induction, a
rule-formation task is tackled in the same style as structured programming. The task
is solved in terms of a collection of notional super-attributes, after which the subtasks
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of inducing classification rules to find the values of the super-attributes are ap-
proached in the same top-down fashion. In one classification problem studied, this
method reduced a totally opaque, large decision tree to a hierarchy of nine small deci-
sion trees, each of which 'made sense' to an expert.

ID3 allows only two classes for any induction task, although this restriction has
been removed in most later systems. Consider, however, the task of developing a rule
from a given set of examples for classifying an animal as a monkey, giraffe, elephant,
horse, etc. A single decision tree could be produced in which these various classes ap-
peared as leaves. An alternative approach taken by systems such as INDUCE
(Michalski, 1980) would produce a collection of classification rules, one to
discriminate monkeys from non-monkeys, another to discriminate giraffes from
non-giraffes, and so on. Which approach is better? In a private communication,
Marcel Shoppers has set out an argument showing that the latter can be expected to
give more accurate classification of objects that were not in the training set. The
multi-tree approach has some associated problems - the separate decision trees may
classify an animal as both a monkey and a giraffe, or fail to classify it as anything,
for example - but if these can be sorted out, this approach may lead to techniques
for building more reliable decision trees.
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