Game-playing AIs: Games and Adversarial Search I

AIMA 5.1-5.2
Games: Outline of Unit

Part I: Games as Search
- Motivation
- Game-playing AI successes
- Game Trees
- Evaluation Functions

Part II: Adversarial Search
- The Minimax Rule
- Alpha-Beta Pruning
Ratings of human & computer chess champions

AlphaGo seals 4-1 victory over Go grandmaster Lee Sedol

DeepMind's artificial intelligence astonishes fans to defeat human opponent and offers evidence computer software has mastered a major challenge

The world's top Go player, Lee Sedol, lost the final game of the Google DeepMind challenge match. Photograph: Yonhap/Reuters

Google DeepMind's AlphaGo program triumphed in its final game against South Korean Go grandmaster Lee Sedol to win the series 4-1, providing further evidence of the landmark achievement for an artificial intelligence program.

Lee started Tuesday's game strongly, taking advantage of an early mistake by AlphaGo. But in the end, Lee was unable to hold off a comeback by his opponent, which won a narrow victory.
AlphaGo beats Ke Jie again to wrap up three-part match

by Sam Byford | @34Sriangle | May 25, 2017, 1:40am EDT

AlphaGo has again defeated Ke Jie, the world’s number one Go player, in their second game, meaning the AI has secured victory in the three-part match. The win over Ke, universally considered the best Go player in the world, essentially confirms that AlphaGo has surpassed human Go ability a little over a year after the AI first beat Lee Se-dol.

The Simplest Game Environment

- **Multiagent**
- **Static:** No change while an agent is deliberating
- **Discrete:** A finite set of percepts and actions
- **Fully observable:** An agent's sensors give it the complete state of the environment.
- **Strategic:** The next state is determined by the current state and the action executed by the agent and the actions of one other agent.
Key properties of our sample games

1. Two players alternate moves
2. Zero-sum: one player’s loss is another’s gain
3. Clear set of legal moves
4. Well-defined outcomes (e.g. win, lose, draw)

- Examples:
 - Chess, Checkers, Go,
 - Mancala, Tic-Tac-Toe, Othello,
 - Nim, …
More complicated games

- Most card games (e.g. Hearts, Bridge, etc.) and Scrabble
 - Stochastic, not deterministic
 - Not fully observable: lacking in perfect information
- Real-time strategy games (lack alternating moves). e.g. Warcraft
- Cooperative games
A **cooperative multi-agent environment: Pragbot**

- Two players, Commander and Junior, must coordinate to:
 - **Tasks:**
 - Defuse bombs that can kill Commander
 - Defeat badguys before they flip Junior and/or escape
 - Rescue hostages
Formalizing the Game setup

1. Two players: MAX and MIN; MAX moves first.
2. MAX and MIN take turns until the game is over.
3. Winner gets award, loser gets penalty.

• Games as search:
 • *Initial state:* e.g. board configuration of chess
 • *Successor function:* list of (move,state) pairs specifying legal moves.
 • *Terminal test:* Is the game finished?
 • *Utility function:* Gives numerical value of terminal states. e.g. win (+∞), lose (-∞) and draw (0)
 • MAX uses search tree to determine next move.
How to Play a Game by Searching

General Scheme

1. Consider all legal successors to the current state (‘board position’)
2. Evaluate each successor board position
3. Pick the move which leads to the best board position.
4. After *your opponent moves*, repeat.

Design issues

1. Representing the ‘board’
2. Representing legal next boards
3. Evaluating positions
4. Looking ahead
Hexapawn: A very simple Game

- Hexapawn is played on a 3x3 chessboard

- Only standard pawn moves:
 1. A pawn moves forward one square onto an empty square
 2. A pawn “captures” an opponent pawn by moving diagonally forward one square, if that square contains an opposing pawn. The opposing pawn is removed from the board.
Hexapawn: A very simple Game

• Hexapawn is played on a 3x3 chessboard

• Player P₁ wins the game against P₂ when:
 • One of P₁’s pawns reaches the far side of the board.
 • P₂ cannot move because no legal move is possible.
 • P₂ has no pawns left.

(Invented by Martin Gardner in 1962, with learning “program” using match boxes. Reprinted in “The Unexpected Hanging..)
Hexapawn: Three Possible First Moves

White moves
Game Trees

- **Represent the game problem space by a tree:**
 - Nodes represent ‘board positions’; edges represent legal moves.
 - Root node is the first position in which a decision must be made.
Hexapawn: Simplified Game Tree for 2 Moves

White to move

Black to move

White to move
MAX & MIN Nodes: An egocentric view

- Two players: MAX, MAX’s opponent MIN
- *All play is computed from MAX’s vantage point.*
- When MAX moves, MAX attempts to MAXimize MAX’s outcome.
- When MAX’s opponent moves, they attempt to MINimize MAX’s outcome.

WE TYPICALLY ASSUME MAX MOVES FIRST:

- Label the root (level 0) MAX
- Alternate MAX/MIN labels at each successive tree level (*ply*).
- *Even levels* represent turns for MAX
- *Odd levels* represent turns for MIN

MAX (von Sydow) plays chess....
Game Trees

• Represent the game problem space by a tree:
 • Nodes represent ‘board positions’; edges represent legal moves.
 • Root node is the first position in which a decision must be made.

• Evaluation function f assigns real-number scores to `board positions’ without reference to path

• Terminal nodes represent ways the game could end, labeled with the desirability of that ending (e.g. win/lose/draw or a numerical score)
Evaluation functions: $f(n)$

- Evaluates how good a ‘board position’ is
- Based on **static features** of that board alone
- Zero-sum assumption lets us use one function to describe goodness for both players.
 - $f(n) > 0$ if MAX is winning in position n
 - $f(n) = 0$ if position n is tied
 - $f(n) < 0$ if MIN is winning in position n
- Build using expert knowledge,
 - Tic-tac-toe: $f(n) = (\# \text{ of 3 lengths open for MAX}) - (\# \text{ open for MIN})$

(AIMA 5.4.1)
A Partial Game Tree for Tic-Tac-Toe

\[f(n) = \text{# of potential three-lines for } X - \text{# of potential three-line for } Y \] if \(n \) is not terminal
\[f(n) = 0 \] if \(n \) is a terminal tie
\[f(n) = +\infty \] if \(n \) is a terminal win
\[f(n) = -\infty \] if \(n \) is a terminal loss
Chess Evaluation Functions

- Alan Turing’s

 \[f(n) = (\text{sum of A’s piece values}) - (\text{sum of B’s piece values}) \]

- More complex: weighted sum of \textit{positional} features:

 \[\sum w_i \text{feature}_i(n) \]

- Deep Blue has > 8000 features

<table>
<thead>
<tr>
<th>Pieces values for a simple Turing-style evaluation function often taught to novice chess players</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pawn</td>
</tr>
<tr>
<td>Knight</td>
</tr>
<tr>
<td>Bishop</td>
</tr>
<tr>
<td>Rook</td>
</tr>
<tr>
<td>Queen</td>
</tr>
</tbody>
</table>

Positive: rooks on open files, knights in closed positions, control of the center, developed pieces

Negative: doubled pawns, wrong-colored bishops in closed positions, isolated pawns, pinned pieces

\textit{Examples of more complex features}
Some Chess Positions and their Evaluations

White to move
\[f(n) = (9+3) - (5+5+3.25) = -1.25 \]

So, considering our opponent’s possible responses would be wise.
The Minimax Rule (AIMA 5.2)
The Minimax Rule: `Don’t play hope chess’

Idea: Make the best move for MAX *assuming that MIN always replies with the best move for MIN*

Easily computed by a recursive process

- The *backed-up value* of each node in the tree is determined by the values of its children:

 - For a **MAX** node, the backed-up value is the *maximum* of the values of its children *(i.e. the best for MAX)*

 - For a **MIN** node, the backed-up value is the *minimum* of the values of its children *(i.e. the best for MIN)*
The Minimax Procedure

Until game is over:

1. Start with the current position as a MAX node.
2. Expand the game tree a fixed number of *ply*.
3. Apply the evaluation function to the leaf positions.
4. Calculate back-up values bottom-up.
5. Pick the move assigned to MAX at the root.
6. Wait for MIN to respond.
2-ply Example: Backing up values

This is the move selected by minimax

Evaluation function value
What if MIN does not play optimally?

- Definition of optimal play for MAX assumes MIN plays optimally:
 - *Maximizes worst-case outcome* for MAX.
 - (Classic game theoretic strategy)

- But if MIN does not play optimally, MAX will do even better. [Theorem-not hard to prove]
Comments on Minimax Search

- Depth-first search with fixed number of ply m as the limit.
 - $O(b^m)$ time complexity – *As usual!*
 - $O(bm)$ space complexity

- Performance will depend on
 - the quality of the static evaluation function (expert knowledge)
 - depth of search (computing power and search algorithm)

- Differences from normal state space search
 - Looking to make *one* move only, despite deeper search
 - No cost on arcs – costs from backed-up static evaluation
 - MAX can’t be sure how MIN will respond to his moves

- Minimax forms the basis for other game tree search algorithms.
IF TIME ALLOWS....
Alpha-Beta Pruning (AIMA 5.3)

Many slides adapted from Richard Lathrop, USC/ISI, CS 271
Alpha-Beta Pruning

- A way to improve the performance of the Minimax Procedure
- Basic idea: “If you have an idea which is surely bad, don’t take the time to see how truly awful it is” ~ Pat Winston

We don’t need to compute the value at this node.

No matter what it is it can’t effect the value of the root node.
Alpha-Beta Pruning II

- During Minimax, keep track of two additional values:
 - α: MAX’s current *lower* bound on MAX’s outcome
 - β: MIN’s current *upper* bound on MIN’s outcome

- MAX will never allow a move that could lead to a worse score (for MAX) than α
- MIN will never allow a move that could lead to a better score (for MAX) than β

- Therefore, stop evaluating a branch whenever:
 - When evaluating a MAX node: a value $v \geq \beta$ is backed-up
 - MIN will never select that MAX node
 - When evaluating a MIN node: a value $v \leq \alpha$ is found
 - MAX will never select that MIN node
Alpha-Beta Pruning I11a

- Based on observation that for all viable paths utility value \(f(n) \) will be \(\alpha \leq f(n) \leq \beta \)

- Initially, \(\alpha = -\infty \), \(\beta = \infty \)

- As the search tree is traversed, the possible utility value window shrinks as \(\alpha \) increases, \(\beta \) decreases
Alpha-Beta Pruning IIIb

- Whenever the current ranges of alpha and beta no longer overlap, it is clear that the current node is a dead end.
Tic-Tac-Toe Example with Alpha-Beta Pruning

Figure 4.17 Two-ply minimax applied to the opening move of tic-tac-toe.