Game-playing AIs: Games and Adversarial Search

AIMA 5.1-5.4

Why study games?

- Multi-agent environments: environments with other agents, whose actions affect our success
 - Two general categories: Cooperative vs. competitive
 - Competitive multi-agent environments give rise to adversarial search a.k.a. games
- Historical role in AI
- Huge state spaces – Games are hard!
- Games are fun!

State of the Art I - 1997

- How good are computer game players?
 - Chess:
 - 1997: Deep Blue beat Gary Kasparov
 - 2006: Vladimir Kramnik, the undisputed world champion, defeated 4-2 by Deep Fritz ($60 on Amazon!)
 - Checkers: Chinook (an AI program with a very large endgame database) is the world champion. Chinook has been solved exactly – it’s a draw!
 - Go: 2013 – Two 9-dan professional Go players were defeated by two different programs using probabilistic Monte Carlo methods, albeit with a 3- and 4-stone handicap.
 - Bridge: "Expert" computer players exist (but no world champions yet!)

Good place to learn more: http://www.cs.ualberta.ca/~games/
A cooperative multi-agent environment: Pragbot

Key properties of our sample games
1. Two players alternate moves
2. Zero-sum: one player’s loss is another’s gain
3. Clear set of legal moves
4. Well-defined outcomes (e.g. win, lose, draw)

- Examples:
 - Chess, Checkers, Go,
 - Mancala, Tic-Tac-Toe, Othello,
 - Nim, ...

More complicated games
- Most card games (e.g. Hearts, Bridge, etc.) and Scrabble
 - non-deterministic
 - lacking in perfect information
- Cooperative games
- Real-time strategy games (lack alternating moves). e.g. Warcraft

Formalizing the Game setup
1. Two players: MAX and MIN; MAX moves first.
2. MAX and MIN take turns until the game is over.
3. Winner gets award, loser gets penalty.

- Games as search:
 - Initial state: e.g. board configuration of chess
 - Successor function: list of (move, state) pairs specifying legal moves.
 - Terminal test: Is the game finished?
 - Utility function: Gives numerical value of terminal states. E.g. win (+1), lose (-1) and draw (0) in tic-tac-toe
 - MAX uses search tree to determine next move.
Hexapawn: A very Simple Game

- Hexapawn is played on a 3x3 chessboard
- Two possible moves:
 1. Move a pawn directly forward one square onto an empty square
 2. Move a pawn diagonally forward one square, but only if that square contains an opposing pawn. The opposing pawn is removed from the board.
- Player P_1 wins the game against P_2 when:
 • One of P_1’s pawns reaches the far side of the board.
 • P_2 cannot move because no legal move is possible.
 • P_2 has no pawns left.

(INvented by Martin Gardner; gives learning “program” with match boxes. Reprinted in “The Unexpected Hanging..”)

Game Trees

- Represent the game problem space by a tree:
 • Nodes represent ‘board positions’; edges represent legal moves.
 • Root node is the first position in which a decision must be made.
- Evaluation function f assigns real-number scores to ‘board positions’ without reference to path
- Terminal nodes represent ways the game could end, labeled with the desirability of that ending (e.g. win/lose/draw or a numerical score)

MAX & MIN Nodes: An egocentric view

- Two players: MAX, MAX’s opponent MIN
- All play is computed from MAX’s vantage point.
- When MAX moves, MAX attempts to MAXimize M’s outcome.
- When MAX’s opponent moves, they attempt to MINimize M’s outcome.

WE TYPICALLY ASSUME MAX MOVES FIRST:

- Label the root (level 0) MAX
- Alternate MAX/MIN labels at each successive tree level (ply).
- All even levels represent turns for MAX
- All odd levels represent turns for MIN

Evaluation functions: $f(n)$

- Evaluates how good a ‘board position’ is
 • Based on static features of that board alone
- Zero-sum assumption lets us use one function to describe goodness for both players.
 • $f(n)>0$ if MAX is winning in position n
 • $f(n)=0$ if position n is tied
 • $f(n)<0$ if MIN is winning in position n
- Build using expert knowledge,
 • Tic-tac-toe: $f(n)=\#$ of 3 lengths open for MAX)- (\# open for MIN)

(AIMA 5.4.1)
A Partial Game Tree for Tic-Tac-Toe

\[f(n) = 8 - 5 = 3 \]

\[f(n) = 8 - 8 = 0 \]

\[f(n) = 6 - 5 = 1 \]

\[f(n) = 6 - 3 = 3 \]

\[f(n) = 6 - 4 = 2 \]

\[f(n) = 6 - 2 = 4 \]

\[f(n) = \infty \]

\[f(n) = +\infty \]

\[f(n) = 2 \]

\[f(n) = 3 \]

\[f(n) = 2 \]

\[f(n) = 3 \]

\[f(n) = 0 \]

\[f(n) = 1 \]

Chess Evaluation Functions

- Alan Turing's
 \[f(n) = (\text{sum of } A\text{'s piece values}) - (\text{sum of } B\text{'s piece values}) \]

- More complex: weighted sum of positional features:
 \[\sum w_{\text{feature}}(n) \]

- Deep Blue has > 8000 features

Chess Positions and their Evaluations

White to move
\[f(n) = (9 + 3) - (5 + 5 + 3.25) = -1.25 \]

\[\ldots \text{Nxg5??} \]
\[f(n) = (9 + 3) - (5 + 5) = 2 \]

Uh-oh! Rxg4+
\[f(n) = (3) - (5 + 5) = -7 \]

And black may force checkmate

Some Chess Positions and their Evaluations

The Minimax Rule

- The backed-up value of each node in the tree is determined by the values of its children:
 - For a MAX node, the backed-up value is the maximum of the values of its children (i.e. the best for MAX)
 - For a MIN node, the backed-up value is the minimum of the values of its children (i.e. the best for MIN)

The Minimax Rule: ‘Don’t play hope chess’

Idea: Make the best move for MAX assuming that MIN always replies with the best move for MIN

The Minimax Procedure

Until game is over:

1. Start with the current position as a MAX node.
2. Expand the game tree a fixed number of ply (single player moves).
3. Apply the evaluation function to the leaf positions.
4. Calculate back-up values bottom-up.
5. Pick the move assigned to MAX at the root
6. Wait for MIN to respond
What if MIN does not play optimally?

- Definition of optimal play for MAX assumes MIN plays optimally:
 - Maximizes worst-case outcome for MAX.
 - (Classic game theoretic strategy)
- But if MIN does not play optimally, MAX will do even better. [Theorem-not hard to prove]

Comments on Minimax Search

- Depth-first search with fixed number of ply \(m \) as the limit.
 - \(O(b^m) \) time complexity – As usual
 - \(O(|b| m) \) space complexity
- Performance will depend on
 - the quality of the static evaluation function (expert knowledge)
 - depth of search (computing power and search algorithm)
- Differences from normal state space search
 - Looking to make one move only, despite deeper search
 - No cost on arcs – costs from backed-up static evaluation
 - MAX can’t be sure how MIN will respond to his moves
- Minimax forms the basis for other game tree search algorithms.

Alpha-Beta Pruning (AIMA 5.3)

Many slides adapted from Richard Lathrop, USC/ISI, CS 271

Alpha-Beta Pruning

- A way to improve the performance of the Minimax Procedure
- Basic idea: “If you have an idea which is surely bad, don’t take the time to see how truly awful it is” – Pat Winston
 - We don’t need to compute the value at this node.
 - No matter what it is it can’t effect the value of the root node.

Alpha-Beta Pruning II

- During Minimax, keep track of two additional values:
 - \(\alpha \): MAX’s current lower bound on MAX’s outcome
 - \(\beta \): MIN’s current upper bound on MIN’s outcome
- MAX will never allow a move that could lead to a worse score (for MAX) than \(\alpha \)
- MIN will never allow a move that could lead to a better score (for MAX) than \(\beta \)
- Therefore, stop evaluating a branch whenever:
 - When evaluating a MAX node: a value \(v \geq \beta \) is backed-up
 —MIN will never select that MAX node
 - When evaluating a MIN node: a value \(v \leq \alpha \) is found
 —MAX will never select that MIN node
Alpha-Beta Pruning IIIa
- Based on observation that for all viable paths utility value \(f(n) \) will be \(\alpha \leq f(n) \leq \beta \)
- Initially, \(\alpha = -\infty \), \(\beta = \infty \)
- As the search tree is traversed, the possible utility value window shrinks as \(\alpha \) increases, \(\beta \) decreases

Alpha-Beta Pruning IIIc
- Whenever the current ranges of alpha and beta no longer overlap, it is clear that the current node is a dead end

A VERY Simplified Alpha-Beta Example
Do DF-search until first leaf

Simplified Alpha-Beta Example (continued)
Simplified Alpha-Beta Example (continued)

This node is worse for MAX.

This node is worse for MAX.

Alpha-beta Algorithm: In detail

- Depth first search (usually bounded, with static evaluation)
 - only considers nodes along a single path from root at any time

\(\alpha = \) highest-value found at any point of current path for MAX
 (initially, \(\alpha = -\infty \))

\(\beta = \) lowest-value found at any point of current path for MIN
 (initially, \(\beta = +\infty \))

- Pass current values of \(\alpha \) and \(\beta \) down to child nodes during search.
- Update values of \(\alpha \) and \(\beta \) during search:
 - MAX updates \(\alpha \) at MAX nodes
 - MIN updates \(\beta \) at MIN nodes
- Prune remaining branches at a node when \(\alpha \geq \beta \)

When to Prune

Prune whenever \(\alpha \geq \beta \).

- Prune below a Max node when its \(\alpha \) value becomes \(\geq \)
 the \(\beta \) value of its ancestors.
 - Max nodes update \(\alpha \) based on children's returned values.
 - Idea: Player MAX at node above won't pick that value anyway, he can
 force a worse value.

- Prune below a Min node when its \(\beta \) value becomes \(\leq \)
 the \(\alpha \) value of its ancestors.
 - Min nodes update \(\beta \) based on children's returned values.
 - Idea: Player MIN at node above won't pick that value anyway; she can do better.

Pseudocode for Alpha-Beta Algorithm

```plaintext
function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game
\( v \leftarrow \) MAX-VALUE(state, \( -\infty \), \( +\infty \))
return an action in ACTIONS(state) with value \( v \)
```

```
function MAX-VALUE(state, \( \alpha \), \( \beta \)) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
for \( a \) in ACTIONS(state) do
  \( v \leftarrow \) MIN-VALUE(Result(s, a), \( \alpha \), \( \beta \))
  if \( v \geq \beta \) then return \( v \)
  \( \alpha \leftarrow \) MAX(\( \alpha \), \( v \))
return \( v \)
```

(MIN-VALUE is defined analogously)
Alpha-Beta Example Revisited

Do DF-search until first leaf

MIN

\(\alpha = -\infty \)
\(\beta = -\infty \)

\(\alpha, \beta \) initial values

Do DF-search until first leaf

MAX

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha, \beta \) passed to kids.

MIN

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \), \(\beta = +\infty \)

MIN updates \(\beta \), based on kids.

MAX updates \(\alpha \), based on kids.

MIN updates \(\beta \), based on kids.

3 is returned as node value.

MAX

\(\alpha = +\infty \)
\(\beta = +\infty \)

\(\alpha = +\infty \), \(\beta = +\infty \)

MIN

\(\alpha = +\infty \)
\(\beta = 3 \)

\(\alpha = +\infty \), \(\beta = 3 \)

MIN updates \(\beta \), based on kids.

No change.

\(\alpha = 3 \)
\(\beta = +\infty \)

\(\alpha = 3 \), \(\beta = +\infty \)

MIN

\(\alpha = 3 \)
\(\beta = +\infty \)

\(\alpha = 3 \), \(\beta = +\infty \)

MIN updates \(\beta \), based on kids.

MAX updates \(\alpha \), based on kids.

MIN

\(\alpha = 3 \)
\(\beta = 2 \)

\(\alpha = 3 \), \(\beta = 2 \)

MIN updates \(\beta \), based on kids.

3 is returned as node value.

MAX

\(\alpha = +\infty \)
\(\beta = +\infty \)

\(\alpha = +\infty \), \(\beta = +\infty \)

MIN

\(\alpha = +\infty \)
\(\beta = 8 \)

\(\alpha = +\infty \), \(\beta = 8 \)

MIN updates \(\beta \), based on kids.

No change.

\(\alpha = 12 \)
\(\beta = +\infty \)

\(\alpha = 12 \), \(\beta = +\infty \)

MIN

\(\alpha = 12 \)
\(\beta = 8 \)

\(\alpha = 12 \), \(\beta = 8 \)

MIN updates \(\beta \), based on kids.

No change.

\(\alpha = 3 \)
\(\beta = +\infty \)

\(\alpha = 3 \), \(\beta = +\infty \)

MIN

\(\alpha = 3 \)
\(\beta = 2 \)

\(\alpha = 3 \), \(\beta = 2 \)

MIN updates \(\beta \), based on kids.

3 is returned as node value.
Alpha-Beta Example (continued)

\[\alpha = 3 \]
\[\beta = +\infty \]
\[\alpha \geq \beta \]
so prune.

\[\alpha = 3 \]
\[\beta = 2 \]
\[\alpha \] is returned as node value.

MAX updates \(\alpha \), based on kids.

MIN updates \(\beta \), based on kids.

\[\alpha = 3 \]
\[\beta = +\infty \]
\[\alpha = 3 \]
\[\beta = +\infty \]
\[\alpha = 3 \]
\[\beta = +\infty \]

\[\alpha = 3 \]
\[\beta = 14 \]
\[\alpha = 3 \]
\[\beta = 5 \]
\[\alpha = 3 \]
\[\beta = 5 \]

\[\alpha = 3 \]
\[\beta = +\infty \]
\[\alpha = 3 \]
\[\beta = +\infty \]
\[\alpha = 3 \]
\[\beta = +\infty \]

\[\alpha = 3 \]
\[\beta = +\infty \]
\[2 \] is returned as node value.
Effectiveness of Alpha-Beta Pruning

- Guaranteed to compute same root value as Minimax
- Worst case: no pruning, same as Minimax ($O(b^d)$)
- Best case: when each player’s best move is the first option examined, examines only $O(b^{d/2})$ nodes, allowing to search twice as deep!

When best move is the first examined, examines only $O(b^{d/2})$ nodes....

- So: run Iterative Deepening search, sort by value last iteration.
- So: expand captures first, then threats, then forward moves, etc.
- $O(b^{d/2})$ is the same as having a branching factor of \sqrt{b},
 - Since $(\sqrt{b})^2 = b^{d/2}$
 - E.g., in chess go from $b \sim 35$ to $b \sim 6$
- For Deep Blue, alpha-beta pruning reduced the average branching factor from 35-40 to 6, as expected, doubling search depth

Real systems use a few tricks

- Expand the proposed solution a little farther
 - Just to make sure there are no surprises
- Learn better board evaluation functions
 - E.g., for backgammon
- Learn model of your opponent
 - E.g., for poker
- Do stochastic search
 - E.g., for go

Chinook and Deep Blue

- Chinook
 - the World Man-Made Checkers Champion, developed at the University of Alberta.
 - Competed in human tournaments, earning the right to play for the human world championship, and defeated the best players in the world.
- Deep Blue
 - Defeated world champion Gary Kasparov 3.5-2.5 in 1997 after losing 4-2 in 1996.
 - Uses a parallel array of 256 special chess-specific processors
 - Evaluates 200 billion moves every 3 minutes; 12-ply search depth
 - Expert knowledge from an international grandmaster.
 - 8000 factor evaluation function tuned from hundreds of thousands of grandmaster games
 - Tends to play for tiny positional advantages.
Example

-which nodes can be pruned?

Answer to Example

-which nodes can be pruned?

Answer: NONE! Because the most favorable nodes for both are explored last (i.e., in the diagram, are on the right-hand side).

Second Example

(the exact mirror image of the first example)

-which nodes can be pruned?

Answer to Second Example

(the exact mirror image of the first example)

Answer: LOTS! Because the most favorable nodes for both are explored first (i.e., in the diagram, are on the left-hand side).