Outline

- Automated Propositional Proof Methods
 1. Resolution
 2. A Practical Method: Walksat
 3. Proof Methods for Horn Clauses
 — Forward and Backward Chaining

Proof Methods for Propositional Logic

Outline

- Automated Propositional Proof Methods
 1. Resolution
 2. A Practical Method: Walksat
 3. Proof Methods for Horn Clauses
 — Forward and Backward Chaining

Proof methods

I. Application of Inference Rules
 - Each application yields the legitimate (sound) generation of a new sentence from old
 - Proof = a sequence of sound inference rule applications
 - Inference Rules as operators for a standard search algorithm
 - Typically require transformation of sentences into a normal form
 - Example: Resolution

II. Model Checking Methods
 - Examples:
 - Truth Table Enumeration (tests satisfiability, validity)
 - WalkSat (tests satisfiability)

Resolution

Applies to a DB of Sentences in Conjunctive Normal Form (CNF)

\[\text{conjunction} \text{ of clauses of disjunctions of literals and negated literals} \]

\[(A \lor \neg B) \lor (B \lor \neg C) \lor (C \lor \neg D) \]

Resolution inference rule (for CNF):

\[l_1 \lor \cdots \lor l_i \lor \cdots \lor m_1 \lor \cdots \lor m_j \]

where \(l_i \) and \(m_j \) are complementary literals, i.e. \(l_i = \neg m_j \)

\[e.g. \quad P_{1,3} \lor P_{2,2} \lor \neg P_{2,2} \]

Resolution is sound and complete for propositional logic

Soundness of resolution inference rule

If \(\xi = \neg m_j \)

\[(\xi \lor \cdots \lor \xi_i \lor \cdots \lor \xi_l) \Rightarrow \xi \]

\[\neg \xi \Rightarrow (m_1 \lor \cdots \lor m_{i-1} \lor m_{i+1} \lor \cdots \lor m_j) \]

\[(\neg l_i \lor \cdots \lor \neg \xi_i \lor \cdots \lor \neg \xi_l) \Rightarrow (m_1 \lor \cdots \lor m_{i-1} \lor m_{i+1} \lor \cdots \lor m_j) \]

Given that \((\alpha \Rightarrow \beta) = (\neg \alpha \lor \beta) \)

Review: Validity and satisfiability

A sentence is valid if it is true in all models,

e.g. True, \(A \lor \neg A, A \Rightarrow A, (A \land (A \Rightarrow B)) \Rightarrow B \)

Validity is connected to inference via the Deduction Theorem:

\[KB \vdash \alpha \text{ if and only if } (KB \Rightarrow \alpha) \text{ is valid} \]

A sentence is satisfiable if it is true in some model

e.g. \(A \lor B \lor C \)

A sentence is unsatisfiable if it is false in all models

e.g. \(A \land \neg A \land B \land \neg B \land C \land \neg C \land \neg B \lor B \lor A \land \neg A \lor A \lor \neg A \)

Satisfiability is connected to inference via the following:

\[KB \vdash \alpha \text{ if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable} \]

(there is no model for which KB=true and \(\alpha \) is false)
Proof by Resolution: Proof by contradiction

- I.E.: prove \(\alpha \) by showing \(KB \land \neg \alpha \) unsatisfiable
- Example: \(KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \)
 - Prove \(\neg P_{1,2} \)
- KB in Conjunctive Normal Form:
 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \land \neg B_{1,1} \]
- Negate \(\alpha \): \(P_{1,2} \)

Conversion to CNF: General Procedure

Example: \(B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)

1. **Eliminate \(\iff \)**, replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha)\).

 \[\begin{aligned}
 (B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1})

 \end{aligned} \]

2. **Eliminate \(\implies \)**, replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).

 \[\begin{aligned}
 \neg B_{1,1} \lor P_{1,2} \lor P_{2,1}

 \end{aligned} \]

3. **Move \(\neg \)** inwards using de Morgan’s rules and (often, but not here) double-negation:

 \[\begin{aligned}
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})

 \end{aligned} \]

4. **Flatten** by applying distributivity law (\(\land \) over \(\lor \)):

 \[\begin{aligned}
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})

 \end{aligned} \]

For convenience: Logical equivalence

- To manipulate logical sentences, we need some rewrite rules.
- Two sentences are **logically equivalent** if they are true in same models: \(\alpha \equiv \beta \) iff \(\alpha \models \beta \) and \(\beta \models \alpha \)

Resolution algorithm

- **Iteratively apply resolution to all pairs of clauses**

Resolution example

- \(KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \)
 - **\(\alpha = \neg P_{1,2} \)**

The WalkSAT algorithm

- A practical, simple algorithm to determine **satisfiability** for propositional logic
- **Sound**
- **Incomplete**
- A hill-climbing search algorithm
- Balance between greediness and randomness
 - Evaluation function: The **min-conflict heuristic** of minimizing the number of unsatisfied clauses
 - Uses random jumps to escape local minima
The WalkSAT algorithm

Function: `WalkSAT(clauses, p, max-flips)` returns a satisfying model or failure.

Inputs: `clauses`, a set of clauses in propositional logic

p, the probability of choosing to do a "random walk" move

`max-flips`, number of flips allowed before giving up

1. Let `t = 1`
2. If model satisfies clauses then return model
3. Else if model satisfies clauses then return new model
4. Else flip a randomly selected clause from a randomly selected symbol with probability `p`
5. If model is satisfied then return model
6. Else flip a randomly selected clause from a randomly selected symbol
7. Return failure.

Hard satisfiability problems

- Consider random 3-CNF sentences, e.g.,

 \[-D \lor \neg B \lor C \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor \neg E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)\]

 \[
m = \text{number of clauses}
 \]

 \[
n = \text{number of symbols}
 \]

- Hard problems seem to cluster near `m/n = 4.3` (critical point)

- Here:

 \[
m = 4, n = \{A, B, C, D, E\} = 5
 \]

 \[
m/n = 4/5 = .8
 \]

Encoding Wumpus in propositional logic

- 4x4 Wumpus World

 - At least one Wumpus on the board

 \[W_1 \lor W_2 \lor W_3 \lor W_4 \lor W_{1,1} \lor W_{1,2} \lor W_{1,3} \lor W_{1,4}\]

 - At most one Wumpus on the board (for any two squares, one is free)

 \[\neg W_1 \lor \neg W_2 \lor \neg W_3 \lor \neg W_4\]

 - No instant death:

 \[-P_{1,1}\]

 \[-W_{1,1}\]
Expressiveness limitation of propositional logic

- KB contains “physics” sentences for every single square
- Rapid proliferation of clauses

Forward and backward chaining

- **Horn Clause** (restricted)
 - Horn clause:
 - proposition symbol
 - (conjunction of symbols) ⇒ symbol
 - E.g., \(A \land B \Rightarrow A \lor C \lor D \Rightarrow B \)
- **KB = conjunction of Horn clauses**
 - E.g., \(C \land (B \Rightarrow A) \land (C \land D \Rightarrow B) \)
- **Modus Ponens** (for Horn Form): complete for Horn KBs
 \[
 \alpha_1, \ldots, \alpha_n, \alpha_1 \land \ldots \land \alpha_n \Rightarrow \beta
 \]

 - Used with forward chaining or backward chaining.
 - These algorithms are very natural and run in linear time

Forward chaining

- Idea: Apply modus ponens to any Horn Clause whose premises are satisfied in the KB
 - Add its conclusion to the KB, until query is found
 - Easy to visualize informally in graphical form:

Forward chaining example

Forward chaining example
Forward chaining example
Proof of completeness

FC derives every atomic sentence that is entailed by \(KB \)

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model \(m \), assigning true/false to symbols
3. Every clause in the original \(KB \) is true in \(m \)
4. Hence \(m \) is a model of \(KB \)
5. If \(KB \models q \), \(q \) is true in every model of \(KB \), including \(m \)

Backward chaining

Idea: work backwards from the query \(q \):
- to prove \(q \) by BC, check if \(q \) is known already, or prove by BC all premises of some rule concluding \(q \)
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward chaining example

Backward chaining example
Forward vs. backward chaining

- FC is **data-driven**, automatic, unconscious processing.
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be **much less** than linear in size of KB