Logical Agents

(AIMA - Chapter 7)
Outline

1. Knowledge-based agents
2. Wumpus world
3. An introduction to logic
 • Inference, validity, equivalence and satisfiability
4. Propositional logic

Next Time:
• Automated Propositional Theorem Provers
 • Resolution
 • A Practical Method: Walksat
1. Knowledge-based Agents
Logical Agents

- Most useful in non-episodic, partially observable environments

- **Logic (Knowledge-Based) agents** combine
 1. A *knowledge base (KB)*: a list of facts that are known to the agent.
 2. Current percepts to *infer hidden* aspects of the current state using *Rules of inference*

- **Logic** provides a good formal language for both
 - Facts encoded as *axioms*
 - Rules of inference
The Knowledge Base

A set of *sentences*
- that *encodes assertions* about the worldi
- in a formal *knowledge representation language*.

Declarative approach to building an agent:
- *Tell* it what it needs to know — add fact to KB.
- *Ask* it what to do — compute using *inference rules* also in KB
Generic KB-Based Agent Pseudocode

```
function KB-AGENT( percept) returns an action
static: KB, a knowledge base
       t, a counter, initially 0, indicating time
Tell(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action ← Ask(KB, MAKE-ACTION-QUERY(t))
Tell(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t + 1
return action
```

- Agent must be able to:
 1. Represent states and actions,
 2. Incorporate new percepts
 3. Update internal representation of the world
 4. Deduce hidden properties of the world
 5. Deduce appropriate actions – requires some logic of action
Running Example: The Wumpus World

A Hunt the Wumpus Flash version: http://www.flashrolls.com/puzzle-games/Hunt-The-Wumpus-Flash-Game.htm
Our **PEAS** description

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step

- **Environment**
 - Squares adjacent to wumpus are *smelly*
 - Squares adjacent to pit are *breezy*
 - **Glitter** iff gold is in the same square
 - Gold is picked up by reflex, can’t be dropped
 - You *bump* if you walk into a wall

- **Actuators:** Move `<dir>`
- **Sensors:** Stench, Breeze, Glitter, Bump
Full PEAS description

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - Squares adjacent to wumpus are *smelly*
 - Squares adjacent to pit are *breezy*
 - *Glitter* iff gold is in the same square
 - Shooting kills wumpus if you are facing it. It *screams*
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
 - You *bump* if you walk into a wall

- **Actuators:** Face <direction>, Move, Grab, Release, Shoot
- **Sensors:** Stench, Breeze, Glitter, Bump, Scream
Wumpus world characterization

- **Deterministic** Yes – outcomes exactly specified
- **Static** Yes – Wumpus and Pits do not move
- **Discrete** Yes
- **Single-agent** Yes – Wumpus is essentially a natural feature

- **Fully Observable** No – only *local* perception
- **Episodic** No—*What was observed before (breezes, pits, etc) is very useful.*
Exploring the Wumpus World

1. The KB initially contains the rules of the environment.

2. **Location:** [1,1]

 Percept: [¬Stench, ¬Breeze, ¬Glitter, ¬Bump]

 Action: Move to safe cell e.g. 2,1

3. **Location:** [2,1]

 Percept: [¬Stench, Breeze, ¬Glitter, ¬Bump]

 Infer: Breeze indicates that there is a pit in [2,2] or [3,1]

 Action: Return to [1,1] to try next safe cell
Exploring the Wumpus World

4. **Location:** [1,2] (after going through [1,1])

Percept: [Stench, ¬Breeze, ¬Glitter, ¬Bump]

Infer: Wumpus is in [1,1] or [2,2] or [1,3]

Infer … stench not detected in [2,1], *thus* not in [2,2]

Remember….Wumpus not in [1,1]

Thus … Wumpus is in [1,3]

Therefore [2,2] is safe because of lack of breeze in [1,2]

Action: Move to [2,2]

Remember: Pit in [2,2] or [3,1]

Therefore: Pit in [3,1]!
LOGIC: What is a logic?

• A formal language with associated
 • Syntax – what expressions are legal (well-formed)
 • Semantics – what legal expressions mean
 — in logic, meaning is defined by the truth of each sentence with respect to a set of possible worlds
 — Possible world (simplified): an assignment of values to all logical variables

• e.g. the language of arithmetic
 • Syntax: $X+2 \geq y$ is a legal sentence, x^2+y is not a legal sentence
 • Semantics: $X+2 \geq y$ is true in a world where $x=7$ and $y=1$
 • Semantics: $X+2 \geq y$ is false in a world where $x=0$ and $y=6$
4. Propositional Logic

- Propositional logic is the simplest logic – illustrates basic ideas
- Inference in propositional logic is also *tractable* with reasonable constraints – therefore very useful
Propositional logic: Syntax

Recursively defined:

Base case:

- The atomic proposition symbols P_1, P_2 etc are sentences

Recursion:

- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \leftrightarrow S_2$ is a sentence (biconditional)
Propositional logic: **Semantics**

Each model/world specifies true or false for each proposition symbol

E.g. $P_{1,2}$, $P_{2,2}$, $P_{3,1}$

- *false*
- *true*
- *false*

With these symbols, 8 possible models (worlds) can be enumerated automatically.

Rules for evaluating truth with respect to a model m:

1. **(not)** $\neg S$ is true iff S is false
2. **(and)** $S_1 \land S_2$ is true iff S_1 is true and S_2 is true
3. **(or)** $S_1 \lor S_2$ is true iff S_1 is true or S_2 is true
4. **(if..then)** $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
 i.e., is false iff S_1 is true and S_2 is false
5. **(if and only if)** $S_1 \iff S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = \text{true} \land (\text{true} \lor \text{false}) = \text{true} \land \text{true} = \text{true}$
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i, j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

start:

- $\neg P_{1,1}$
- $\neg B_{1,1}$
- $B_{2,1}$

"Pits cause breezes in adjacent squares"

$B_{1,1} \iff (P_{1,2} \lor P_{2,1})$

$B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
Models

- Logicians typically think in terms of *models*
 - Formally structured “*worlds*” with respect to which truth can be evaluated

- We say *m is a model of* a sentence α if α is true in m

- $M(\alpha)$ is the set of *all* models of α
A key semantic relation: *Entailment*

- *Entailment* means that the *truth* of one sentence follows from the *truth* of another:

\[\text{KB } \models \alpha \]

Knowledge base *KB entails* sentence *\(\alpha \)* if and only if
- \(\alpha \) is true in all worlds where *KB* is true
 - e.g., the KB containing *the Giants won and the Reds lost* entails *The Giants won*
 - e.g., the KB containing *\(x+y = 4 \)* entails *\(4 = x+y \)*

- *Entailment is a relationship between sentences based on semantics*
Models II

• Review:
 • \textit{m is a model of} a sentence \(\alpha \) if \(\alpha \) is true in \(m \)
 • \(M(\alpha) \) is the set of all models of \(\alpha \)

• Entailment:
 • \(KB \models \alpha \) iff \(M(KB) \subseteq M(\alpha) \)

• Example:
 — \(KB = \) Giants won and Reds lost
 \(\alpha = \) Giants won
Entailment in the wumpus world

- Consider possible models for KB assuming only pits and a reduced Wumpus world with only 5 squares and pits

- Situation after
 A. detecting nothing in [1,1],
 B. moving right, breeze in [2,1]:

```
   ?  ?
   A  B
   ?
```
Wumpus models I

All possible models (exactly 8) in this reduced Wumpus world.
Wumpus models II

- In Red: all possible wumpus-worlds consistent with the observations and the "physics" of the Wumpus world.
Deciding what to do by *model checking* I

\[\alpha_1 = "[1,2] is safe", \ KB \models \alpha_1, \text{ proved by model checking} \]
$\alpha_2 = \"[2,2] is safe\"$, $KB \not\models \alpha_2$
Truth tables for connectives

- Truth tables enumerate all possible propositional models
- Thus, truth tables are a simple form of model checking

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(\neg P)</th>
<th>(P \land Q)</th>
<th>(P \lor Q)</th>
<th>(P \Rightarrow Q)</th>
<th>(P \Leftrightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

OR: \(P\) or \(Q\) is true or both are true.
XOR: \(P\) or \(Q\) is true but not both.

Implication is always true when the premises are False!
Inference Procedures

- $KB \models_i \alpha$: sentence α can be derived from KB by procedure i

- **Soundness**: i is sound if whenever $KB \models_i \alpha$, it is also true that $KB \models \alpha$
 - No false inferences
 - (but all true statements might not be derived)

- **Completeness**: i is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
 - All true sentences can be derived,
 - (but some false statements might be derived)

- **Desirable**: sound and complete
Inference by enumeration

- Enumeration of all models (truth tables) is sound and complete.

- For n symbols, time complexity is $O(2^n)$...

- We need a smarter way to do inference!

- One approach: *infer* new logical sentences from the data-base and see if they match a query.
Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are **logically equivalent** iff they are true in same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg\alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \implies \beta) & \equiv (\neg\beta \implies \neg\alpha) \quad \text{contraposition} \\
(\alpha \implies \beta) & \equiv (\neg\alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \implies \beta) \land (\beta \implies \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg\alpha \lor \neg\beta) \quad \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg\alpha \land \neg\beta) \quad \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and satisfiability

A sentence is *valid* if it is true in all models,
e.g. \(\text{True, } A \lor \neg A, \ A \Rightarrow A, \ (A \land (A \Rightarrow B)) \Rightarrow B \)

Validity is connected to inference via the Deduction Theorem:
\[
KB \models \alpha \text{ if and only if } (KB \Rightarrow \alpha) \text{ is valid}
\]

A sentence is *satisfiable* if it is true in some model
e.g. \(A \lor B, \ C \)

A sentence is *unsatisfiable* if it is false in all models
e.g. \(A \land \neg A \)

Satisfiability is connected to inference via the following:
\[
KB \models \alpha \text{ if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable}
\]
(there is no model for which KB=true and \(\alpha \) is false)