First-Order Logic

AIMA, Chapter 8
Pros and cons of propositional logic

😊 Propositional logic is *declarative*

😊 Propositional logic allows partial/disjunctive/negated information
 - (unlike most data structures and databases)

😊 Propositional logic is *compositional*:
 - meaning of $B_{1,1} \land P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

😊 Meaning in propositional logic is *context-independent*
 - (unlike natural language, where meaning depends on context)

😢 Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares“
 — except by writing one sentence for each square
Outline

- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
First-order logic: Ontological commitments

- Propositional logic assumes the world contains \textit{facts}

- First-order logic (like natural language) assumes the world contains
 - \textit{Objects}: people, houses, numbers, colors, baseball games, wars, centuries…
 - \textit{n-ary Relations}: red, round, prime, brother of, bigger than, part of, comes between, bogus …
 - \textit{Functions}: father of, best friend, third inning of, one more than, plus, …
Logics in general

<table>
<thead>
<tr>
<th>Language</th>
<th>Ontological Commitment</th>
<th>Epistemological Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability theory</td>
<td>facts</td>
<td>degree of belief</td>
</tr>
<tr>
<td>First-order logic</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal logic</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
</tbody>
</table>
Syntax of FOL: Basic elements

- **Constants**
 KingJohn, 2, Penn, ...

- **Predicates**
 Brother(x,y), King(x), Loves(x,y), ...

- **Functions**
 Sqrt, LeftLegOf, ...

- **Variables**
 x, y, a, b, ...

- **Connectives**
 ¬, ⇒, ∧, ∨, ⇔

- **Equality**
 =

- **Quantifiers**
 ∀, ∃
Atomic sentences

Term = constant or variable or function \((\text{term}_1, \ldots, \text{term}_n)\)

Atomic sentence = predicate \((\text{term}_1, \ldots, \text{term}_n)\) or \(\text{term}_1 = \text{term}_2\)

- For example:
 - \(\text{Brother(KingJohn, RichardTheLionheart)}\)
 - \(\text{Loves}(x, 2)\)
Complex sentences

- Complex sentences are made from atomic sentences using connectives
 \[\neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2, \]

For example

\[\text{Sibling}(\text{KingJohn}, \text{Richard}) \Rightarrow \text{Sibling}(\text{Richard}, \text{KingJohn}) \]
\[\text{Loves}(\text{KingJohn}, \text{KingJohn}) \]
Truth in first-order logic

- Sentences are true with respect to a model and an interpretation.

- Model contains objects (domain elements) and relations among them.

- Interpretation specifies referents for
 - constant symbols → objects
 - predicate symbols → relations

- An atomic sentence $\text{predicate}(\text{term}_1, \ldots, \text{term}_n)$ is true iff
 - the objects referred to by $\text{term}_1, \ldots, \text{term}_n$
 - are in the relation referred to by predicate

- What about sentences with variables? Later.....
Models for FOL: Example
Truth example

Consider the interpretation in which

- **Richard** → **Richard the Lionheart**
- **John** → **the evil King John**
- **Brother** → **the brotherhood relation**

Under this interpretation, **Brother(Richard,John)** is true just in case **Richard the Lionheart** and **the evil King John** are in **the brotherhood relation** in the model.
Universal quantification

- \forall<variables> <sentence>

Everyone at Penn is smart:

$\forall x \text{At}(x,\text{Penn}) \Rightarrow \text{Smart}(x)$

- $\forall x P$ is true in a model m

 iff

 P is true with x being each possible object in the model

- Roughly speaking, equivalent to the conjunction of instantiations of P

 $\text{At}(\text{KingJohn},\text{Penn}) \Rightarrow \text{Smart}(\text{KingJohn})$

 $\wedge \text{At}(\text{Richard},\text{Penn}) \Rightarrow \text{Smart}(\text{Richard})$

 $\wedge \text{At}(\text{Penn},\text{Penn}) \Rightarrow \text{Smart}(\text{Penn})$

 $\wedge \ldots$
A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall

- Common mistake: using \land as the main connective with \forall:

$$\forall x \ At(x,Penn) \land Smart(x)$$

means

“Everyone is at Penn and everyone is smart”
Existential quantification

• $\exists <\text{variables}> <\text{sentence}>$

• Someone at Penn is smart:
 $\exists x \text{At}(x,\text{Penn}) \land \text{Smart}(x)$

• $\exists x P$ is true in a model m
 iff
 P is true with x being some possible object in the model

• Roughly speaking, equivalent to the disjunction of instantiations of P:

 $\text{At}(\text{KingJohn},\text{Penn}) \land \text{Smart}(\text{KingJohn})$

 $\lor \text{At}(\text{Richard},\text{Penn}) \land \text{Smart}(\text{Richard})$

 $\lor \text{At}(\text{Penn},\text{Penn}) \land \text{Smart}(\text{Penn})$
Another common mistake to avoid

- Typically, \land is the main connective with \exists

- Common mistake: using \Rightarrow as the main connective with \exists:

$\exists x\ At(x, Penn) \Rightarrow Smart(x)$

is true if there is anyone who is not at Penn!
Properties of quantifiers

- \(\forall x \forall y \) is the same as \(\forall y \forall x \)
- \(\exists x \exists y \) is the same as \(\exists y \exists x \)
- \(\exists x \forall y \) is not the same as \(\forall y \exists x \)
- \(\exists x \forall y \text{ Loves}(x,y) \)
 - “There is a person who loves everyone in the world”
- \(\forall y \exists x \text{ Loves}(x,y) \)
 - “Everyone in the world is loved by at least one person”

- **Quantifier duality**: each can be expressed using the other

\[
\forall x \text{ Likes}(x,\text{IceCream}) \iff \exists x \neg \text{Likest}(x,\text{IceCream})
\]
\[
\exists x \text{ Likes}(x,\text{Broccoli}) \iff \forall x \neg \text{Likes}(x,\text{Broccoli})
\]
Equality

- $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object.

- E.g., definition of *Sibling* in terms of *Parent*:

$$\forall x,y \ Sibling(x,y) \Leftrightarrow \neg (x = y) \land \exists m,f \neg (m = f) \land Parent(m,x) \land Parent(f,x) \land Parent(m,y) \land Parent(f,y)$$
Using FOL for the wumpus world

“Perception”
- \(\forall s,b,t \ Percept([s,b,Glitter],t) \Rightarrow AtGold(t) \)
- \(\forall b,g,t \ Percept([Stench],t) \Rightarrow Stench(t) \)

Reflex
- \(\forall t \ AtGold(t) \Rightarrow Action(Grab,t) \)

Reflex with internal state: do we have gold already?
- \(\forall t \ AtGold(t) \land \neg Holding(Gold,t) \Rightarrow Action(Grab,t) \)

\(Holding(Gold,t) \) cannot be observed
- keeping track of change is essential
Deducing hidden properties

\[\forall x,y,a,b \text{ Adjacent}([x,y],[a,b]) \iff [a,b] \in \{[x+1,y], [x-1,y],[x,y+1],[x,y-1]\} \]

Properties of squares:

\[\forall s,t \text{ At(Agent},s,t) \land \text{Breezy}(t) \Rightarrow \text{Breezy}(s) \]

Squares are breezy near a pit:

- **Diagnostic** rule---infer cause from effect
 \[\forall s \text{ Breezy}(s) \Rightarrow \exists r \text{ Adjacent}(r,s) \land \text{Pit}(r) \]

- **Causal** rule---infer effect from cause
 \[\forall r \text{ Pit}(r) \Rightarrow [\forall s \text{ Adjacent}(r,s) \Rightarrow \text{Breezy}(s)] \]
Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t = 5$:

 $\text{Tell}(KB, \text{Percept}([\text{Smell}, \text{Breeze}, \text{None}], 5))$
 $\text{Ask}(KB, \exists a \text{ BestAction}(a, 5))$

- I.e., does the KB entail some best action at $t = 5$?

- Answer: Yes, \{a/Shoot\} ← substitution (binding list)

- Given a sentence S and a substitution σ, $S\sigma$ denotes the result of plugging σ into S; e.g.,

 $S = \text{Smarter}(x, y)$
 $\sigma = \{x/\text{Hillary}, y/\text{Bill}\}$
 $S\sigma = \text{Smarter}(\text{Hillary}, \text{Bill})$

- $\text{Ask}(KB, S)$ returns some/all σ such that $KB \models S\sigma$ `